9.1 接続文書

接続文書は，機器を組立，据付け又は保守するときに使われ，以下の物理的接続についての情報を提供する。
（1）装置，設備又は組立品の部品間の物理的接続（内部接続）
（2）異なる装置，設備又は組立品間の物理的接続（外部接続）（図9．1）。
（3）一つの装置又は設備への物理的な接続（外部接続）
接続文書中の図の各接続点は，それらの端子指定で識別され，使用される導線やケーブルは，それらの参照指定又は別の合意された識別子で明確に識別される必要がある。その他の接続に関する情報は，必要に応じて適切に含むか，又はその文書が意図する利用の為に要求される範囲で含む必要がある。
接続文書の使用目的に応じて，次のような追加情報が含まれる場合がある。
①導線又はケーブルの形式情報例えば，認証形式表記，製品又は部品番号，材料，構造，寸法，絶縁体の色，定格電圧，導線の数，その他の技術データ）
（2）導線又はケーブルの番号又は参照指定（品目指定）。
（3）接続点の識別又は表記（例えば，参照指定（品目指定）及び端子指定，絵入り表示，遠方側の端子記号）
（4）敷設，引き回し，終端，取付け，撚架，遮へいなどの為の指示書又は方法
（5）導線又はケーブルの長さ
（6）信号指定と信号とに関する技術データ
（7）特別な分類又は情報
色又は数字による導線の識別に関しては，JIS C 0446（章末参照）に，参照指定（品目指定）に関しては，JIS C 0452－ 1に従って表現する必要がある。 これらの情報は，明瞭性が確保 される場合は，図又は表形式で，若しくはこれらの組合せで表現し ても良い。
取付け又は取外しの方法を示す などの為に特別な規則を使った場合には，これを接続文書中，又は補足文書中で示すか，又は参照 するようにすることが望ましい。 9．1．1接続図
接続図は，トポグラフ（地形的）レ イアウトを使うことが望ましい。但 し，寸法記入の必要はない。
装置や設備は，正方形，長方形又は円のような簡略化した外形図 で，又は，略図による表現で表さ れることが望ましい。JIS C 0617の図記号も使用できる。
図の使用目的に合うように，装置，設備又は組立品を配置および表示する必要があるが，表現自体 などにはその必要はない。

図9．1接続図の例

端子は，各端子の識別記号を示す必要があり，また，図の使用目的に合うように，明確に配列及び表示する必要 があるが，端末の物理的な位置などに応じた表現は必要なく，特別な条件がない限り，端子の記号も必要ない。
導線は，6．5．4（接続線）の方法で，連続線又は分断線として表す。
①連続線が端子間の現実の導線を表す場合，導線群，ケーブル，ケーブル束などは，単一線で表してよい（図9．3）。装置又は設備が，幾つかの導線群，ケーブル，ケーブル束などを含む場合，これらは，お互いに分離してよく，又は品目指定してもよい（例：図9．8，ケーブル束－W1及び－W2）。
（2）線のつながりに関する規則が作られている場合，導線を表す線を分断して表しても良い（図9．4）。
T接続の電気用図記号（JIS C 0617の03－02－04及び03－02－05）は，物理的接続がない限り，使ってはならない。 JIS C 0617 の記号を使用した各種のケーブルへの接続を表す例を図 9.5 に示す。
複数の導線からなるケーブルが単一の接続線で表され，それを
構成する導線が物理的端子に接続されていることを表す場合，ケ ーブルを表す接続線は接続線が分岐するところで終端され，分岐 した接続線は構成する各導線を表すものとする。従って，この接続線が分岐するところから端末の表現に移行する必要がある。ケー ブルとそれを構成する導線は，参照指定（品目指定）などで明確に識別される必要がある（図9．2）。

ケーブル導線 の参照指定	端子指定
$-W 1-1$	$-A 2 \times 1: 1$
$-W 1-2$	$-A 2 \times 1: 2$
$-W 1-3$	$-A 2 \times 1: 3$
$-W 1-4$	$-A 2 \times 1: 4$

図 9.2 複数導線からなるケーブルの終端の例

	2本の導線による接続 （JIS C 0617：2011の図記号03－01－01）
	同軸ヶーブルによる接続 （JIS C 0617：2011の図記号03－01－11）
$\bigcirc c$	片端にプラグとソケットがある同軸ケーブル による接続 （JIS C 0617：2011の図記号03－03－15）
	片端を機能等電位接地（フレーム接地）（JIS C 0617：2011の02－15－08），他端を未接続 （JIS C 0617：2011の03－01－14）としたシール ドケーブル（JIS C 0617：2011の03－01－07） による接続
	シールドを片笽のみ接続したシールド（JIS c 0617：2011の03－01－07）リイストペアケー ブル（JIS C 0617：2011の03－01－08）による接続
	芯線4本のケーブル（UIS C 0617 の 03－01－09）のよる接続
	中性線を同軸導体（JIS C 0617：2011の 03－01－18）とした芯線4本のパワーケーブル による接続
	片端を保護接地した金属シールドをもつ芯線5本のパワーケーブルによる接続
	両端を機能等電位接地したシールド内の2本のシールド付きツイストペア線と2本の導体による接続

図9．6 サブラックのユニット接続図の例

図9．7 マトリックス形式のユニット接続図の例

9．1．2 簡略化表現（マトリックス形式）
プリント配線板を含むラックや半組立品の中の接続のように，狭い範囲に導線の接続が集中している場合，接続図 の表現は，マトリックス形式の配置が有利である。マトリックス形式では，概略説明を省略し，簡略化できる。
マトリックス形式では，接続すべき端子の記号を区分形式で配列し，それぞれを識別する必要がある。
① 単一の装置のすべての端子を，接続情報の明確な表現を与える順序で垂直に（水平に）配列し，端子の記号を付ける。この順序は，装置の端子の物理的順序を示す必要はない。
（2）このように配列され，相互接続される端子の列（行）を，水平（垂直）に配置する。
③各々の導線は，接続されるベき端子の記号を通過する水平（垂直）接続線で表す。
名前を付けた信号が流れ る導線は，据付け，運転，又は保守を目的とする図面 の中の接続線の片側の端 で信号指定をもつ必要があ る。
個々の接続点と接続点を結ぶ導線を正確に表示す べき場合は，それぞれの個別の導線は，必要ならば，分離した接続線で示す。線番号を表示してもよく，表示 する場合は，それを示して いる水平［垂直］接続線の上方に［左に］配置しなけれ ばならない。
図9．6に，サブラックの完全な接続図を，図9．7に，マ トリックス形式によるサブラ ックの簡略化された表示を示す。
9．1．3 表およびリスト
表及びリストの各行は他 の行と，又，表及びリストの各列は他の列と明確に区

図9．8 連続線を用いた導線を異なる束線に配置したユニット接続図の例別でき，並びに，各列および行で提示され，文書中で提供される情報の種類を明確に示す必要がある。

［1］参照指定の提示

表内の参照指定と識別子（例 ：参照指定を含む端末指定，信号指定）の表示には，次の規則が適用される。
（1）表の列内の識別子は，表の列のヘッダーに共通の初期部分 （6．2．2［2］（5）を参照）を表示し，その列のオブジェクト識別子の表示から共通の初期部分を省略して，簡略化して表示できる。
（2）その列に指定された共通の最初の部分が前にない列の識別子の前には，文字「GREATER－THAN」（＞）を付ける必要がある （6．2．2［2］（4）を参照）（図9．9）。
③表の列内の連続する行の同一の識別子は，最初の関連する行にのみ表示される場合があります（図9．10）。

図9．9 ヘッダーに共通の初期部分がある例
［2］接続表およびリスト
接続表は，以下のいずれかの形式で作成する必要がある。
（1）端子を中心に表した形式（図9．16参照）。
（2）接続を中心に表した形式（表9．1及び図9．15参照）。
端子を中心に表した形式では，接続される各装置は，その端子一つずつの接続を表し，各端子と結びつく導線を示す必要があ る（図9．16）。
接続を中心に表した形式では，各接続（線，ケ一ブル，ケ一ブル導線など）は，各線又はそのケ一ブルの中で他の導線と共にグル—プ化されている各個別のケ一ブル導線で一つずつ表し，各導線と接続される端子又は終点を示す必要がある（表9．1，表9．2，図9．15）。

図9．10 連続する行の共通の初期部分 の省略の例

装置は，参照指定（品目指定）で表示し，識別する必要がある。
端子は，装置上に印された端子記号で，又はデュアルインラインパッケージ又は電子管のように製造業者又は規定で指定される。
その装置に製造業者で指定された端子記号がない場合は，任意の端子記号を指定する必要があり，それを表又 は附属文書の中で説明する必要がある。同一端子の記号が現れる他のすべての文書で，同じ端子記号を使う必要 がある。
図記号又は色の形式をもつ端子記号の場合，規格化された同等の文字記号を使用できる。例えば，保護接地の図記号の代わりにPEを（JIS C 0445），青色の代わりにBUを使用してもよい（IEC 60757）。
導線は，次の一つ以上を使って表示し，識別する必要がある。
（1）参照指定（品目指定）（図9．11及び図9．12の－W108参照）。
（2）物理的接続自身の上に表されている重複のないマ—キング又は色。
（3）任意に指定した識別番号（図9．4，図9．8及び表9．1）。
（4）接続点によって接続された端子の組（図9．8及び図9．15）。
9.2 接続文書の用例

9．2．1 ユニット接続図及び表

ユニット接続図及び表は，単一の構成ユニット又はユニットの組立内の内部接続に関するすべての必要な情報を提供する必要がある。ユニット間の外部接続に関する情報を含む必要はない。但し，適切な相互接続図又は表を付 けてもよい。

装置の記号は，接続をする場合に，
機器の投影図として見えるものに対応 するように配置することが望ましい。接続をする場合に，機器を異なる方向か ら見る場合には，一つ以上の投影図を使用してもよい。
端子は，実際の装置でそうなっている ように配置する必要はない。
装置が互いに幾つかの層に配置され ている場合，図面の利用者がこれらの装置を見ることができるような方法で，図面の中で裏返し，回転，又は移動し て，これらの装置を示してもよい。この場合，その手段を示すことが望ましい （図9．8，備考で境界線の右の可動部分 は架の前面から結線されていることを示している）。
図9．3，図9．4はユニット接続図の例で，図9．3では，導線が個別の線で描かれ て，線番号で識別されている。図9．4で は，導線を分断して図示すると共に端子を略して図記号を付けてある。
図9．8は，導線が2本の束線－W1及び －W2でグル—プ化された図の例で，束線に入る又は束線から出る線は，電気図記号03－01－17を用いて，容易に識別できるような方法で示している。
表9．1は，図9．3で示したユニットの接続を中心に表したユニット接続表の例 である。指示の欄の導線 44 及び 45 に

表9．1接続を中心に表した接続表の例（図9．3及び図9．4の接続図に対応）

接続			接続点					
形式	記号	指示	ユニット	端子	備考	ユニット	端子	備考
	31		－K11	：1		－K12	：1	
	32		－K11	：2		－K12	：2	
	33		－K11	：3		－K15	：5	
	34		－K11	：4		－K12	：5	39
	35		－K11	：5		－K14	：C	43
	36		－K11	：6		－X1	：1	
	37		－K12	：3		－X1	：2	
	38		－K12	：4		－X1	：3	
	39		－K12	：5	34	－X1	：4	
	40		－K12	：6		－K13	：1	－V1
	－		－K13	：1	40	－V1	：C	
	－		－K13	：2		－V1	：A	
	LINK		－K13	：3		－K13	：4	
	41		－K14	：A		－X1	：5	
	42		－K14	：B		－X1	：6	
	43		－K14	：C	35	－K16	：11	
	44	TWIST 1	－K15	：1		－X1	：7	
	45	TWIST 1	－K15	：2		－X1	：8	
	46	TWIST 2	－K15	：3		－X1	：9	
	47	TWIST 2	－K15	：4		－X1	：10	
	48		－K15	：6		－K16	：12	LINK
	LINK		－K16	：12	48	－K16	：13	
	49		－K16	：1		－X1	：11	
	50		－K16	：2		－X1	：12	
	51		－K16	：3		－X1	：13	

図9．11 複線表示の相互接続図の例

図9．12 部分的な単線表示の相互接続図の例

ついてのTWISTの表記は，この線がツイストペア線であることを示す。導線46及び47は，別のツイストペア線である。備考欄の表記は，ニつ目の導線又は素子が同じ端子に接続されることを表す。
導線記号欄の短いダッシュは，別の導線が必要ない，つまり，ニつの部品の端子が直接接続されている（この場合 では，ダイオード－V1が－K13 の端子に）ことを示す。LINK という表記は，線番号のない物理的結合，すなわち，短絡線を表す。
図9．7は，マトリックス又は区分形式のユニット接続図 の例を示す。各プリント配線板の端子の記号は，図の配置に合わせて置かれている。同じ機器を示す図9．6の図と比べてみて，図9．7では，現実の物理的接続は表されて いないことが分かる。

表9．2接続を中心に表した相互接続表の例

ケーブル形式	$\begin{aligned} & \text { ケーブル } \\ & \text { 芯線No. } \end{aligned}$	接続点						備考
		品目	端子	備考	品目	端子	備考	
H05VV－U3x1．5	－W107	＋A－X1			＋B－X1			
	． 1		1			2		
	． 2		2			3	－W108．2	
	． 3		3	－W109．1		1	－W108．1	
HO5VV－U2x1．5	－W108	＋B－X1			＋C－X1			
	． 1		1	－W107．3		1		
			3	－W107．2		2		
H05VV－U3x1．5	－W109	＋A－X1			＋D			補助電圧線
				－W107．3				
								230 V

9．2．2 相互接続図および表

相互接続図及び表には，機器又は設備の異なった構成ユニット間の接続に必要な情報 を記載する必要がある。ユニット中の内部接続の情報は必要ないが，適切な参照（例えば， ユニット接続図又は表への参照，若しくは参照指定（品目指定）による内部部品への参照） を記載してもよい。
すべての装置及び接続は，それらがあたか も一平面上に存在するかのように示すことが望ましい。
図9．11に複線表示の相互接続図の例を示 す。－W109のケーブル端末の情報は，遠方側の端子についての参照指定（品目指定） （＋D）で補足されている。図9．12と表9．2は，図9．11と同じ機器の部分的な単線表示の相互接続図の例，及び接続を中心に表した相互接続表の例である。

9．2．3 端子接続図および表

端子接続図及び表には，単独構成のユニッ ト又は機器の外部接続を行う為に必要な情報を記載する必要がある。
ある対応する一組のユニットの接続に関す る情報を提供する端子接続図又は表の組は，同一ユニット間の接続の為の相互接続図及 び表と同じ形式で同じ情報を含む必要があ る。つまり，同じ規則を適用する必要がある。

図9．13 ニつの端子接続図の例

図9．14 遠方側の端子記号を表示した二つの端子接続図の例

$\begin{gathered} \text { ケーブル } \\ \text { No. } \end{gathered}$	芯線 No．	端子	遠方側の終点	備考		
－W136			＋B4			
	PE	－X1：PE	－X1：PE			
	1	－X1：11	－X1：33			
	2	－X1：17	－X1：34			
	3	－X1：18	－X1：35			
	4	－X1：19	－X1：36			
	5	－X1：20	－X1：37	RES		
－W137			＋B5			
	PE	－X1：PE	－X1：PE			
	1	－X1：12	－X1：26			
	2	－X1：13	－X1：27			
	3	－X1：14	－X1：28			
	4	－X1：15	－X1：29			
	5	－X1：16	－	RES		
	6	－	－	RES		$+A 4$
:---						
234567						

図9．15遠方側の端子記号を表示したニつの端子接続図の例

品目	端子	ケーブル	芯線
－X1	：11	－W136	1
	：12	－W137	1
	：13	－W137	2
	：14	－W137	3
	：15	－W137	4
	：16	－W137	5
	：17	－W136	2
	：18	－W136	3
	：19	－W136	4
	：20	－W136	5
	：PE	－W136	PE
	：PE	－W137	PE
	RES	－W137	6
			＋A4
			345778

図9．16 端子を中心に表した端子接続表の例

図9．13は，ニつの接続ユニ ット（＋A4と＋B5）の端子接続図を示す。各ケーブル端末は， その参照指定（品目指定）で，各芯線はその芯線番号で区別されている。接続されてい る又は接続されていない予備端子は，文字＂RES＂（予備）で表示されている。
図9．14は，同じニつの端子接続図を，遠方側の端子指定 で補足して示している。
図9．15は，図9．14の端子接続図に基づく遠方側の端子記

図 9.17 遠方側の端子指定をもつ区分形式の端子接続表の例

号をもつニつの接続を中心に表した端子接続表である。記号＂－＂（ダッシュ）は，接続がないことを，文字＂RES＂は，接続されている又は接続されていない予備芯線であることを示す。
図9．16及び図9．17は，図9．13に示すユニット＋A4についての端子を中心に表した端子接続表及び区分形式の端子接続表である。
図9．17では，ケーブルの芯線の番号は，欄のケーブル番号の隣に記されており，予備芯線の番号は同じ行の最後列に記されている。
9．2．4 ケーブル図，表およびリスト
ケーブル線図及び表には，機器又は設備の構成ユニット間のケーブルの布設のために必要なすべての情報を記載する必要がある。必要なら，ケーブルの組はケーブル参照指定（品目指定）をもつ単線で表してもよい（図9．18）。
図9．19及び表9．3は，図9．11と同じユニットのケーブル線図及びケーブル表の例である。

図9．18 ケーブルの組が単線で表されている ケーブル線図の一部の例の例

表9．3 ケーブル表の例

ケーブルNo．	ケーブル形式	終端点		備考
$-W 107$	HO5VV－U3x1．5	+A	+B	
-W 108	HO5VV－U2x1．5	+B	+C	補助電圧源
-W 109	HO5VV－U2x1．5	+A	+D	AC 230V

図9．19 ケーブル線図の例
9.3 配置•据付け文書

9．3．1 電気設備と文書
電気設備は，例えば，照明システム，電源システムなど複数のシステムに分割できる。又，それらのシステムが据 え付けられる場所も，船舶，建造物，鉱山などと様々である。
据付けの複雑さを考慮して，各システムを別々に文書化するのが望ましい。据付けに必要な情報に関しての要求 は，それぞれのシステム毎に異なっていて当然で，それぞれのシステムが他のシステムと明確に区別できる場合だ け，それらのシステムを組み合わせた表現にすることができる。
据付け文書は，据付け作業（組立て，据付け，接続など）が終了するまでの間，すなわち，電気設備の出荷から調整 までの期間である据付け段階における活動を支援する文書であり，次の事項を基礎として作成する。
（1）コンジット，ダクト，ラックなどの取付け
（2）導体及びケーブルの敷設
（3）設備の場所
（4）設備間の接続
（5）据付け検査
（5）その他
据付け文書は，据付け段階以外の活動，例えば，
①材料及び作業の明細及び見積り
（2）設備支持物（例えば，基礎）の設計
（3）その他システムの設計
などの活動の基礎としても利用される。
実際問題として，製作，操作，又は保守などの目的の為に，補足文書が必要とされることがある。補足文書にも，重要な据付け情報が含まれている。
文書の種類は，規模及び複雑さに応じて，特定の仕事，又は据付け業務の為に必要とされる情報次第で作成及び提供されるべきもので，関係者間の合意によって決定される。
9．3．2 据付けに必要な情報
各据付け作業の為に相当量の情報が必要となるので，合意範囲，例えば，契約書に合わせて，据付け文書及び補足文書の種類毎に，それらを盛り込む必要がある。文書に盛り込むべき情報量は，据付けられるシステムの複雑さ，確立した規則，法規，規格の適用，顧客の条件など，又は据付け要員の技量に応じて大幅に変えることができる。
表9．4は，様々な活動に必要とされる情報の例，及びこれらの情報を盛り込む文書の種類を示す。
表9．4は，契約者が据付け業務に必要な文書の交渉を行う際のチェックリストとして使用することもできる。
提出文書には，他に取り決めがない限り，表中＂○＂で示した必要最低限の情報を盛り込む必要がある。表中の ＂\oplus＂で示した追加情報は，同意がある限り，必須のものとしてもよい。表9．4には，更に，与えられた目的又は業務に とって必要なものを，行又は列に追加できる。
9．3．3 配置文書作成上の一般規則
配置文書は，JIS C 1082－1及び1082－4の規定に従って作成する必要があり，主に次に示す対象物の相対的又は絶対的な位置や寸法を記載する。
（1）対象物の単純化した外形
（2）対象物の主要寸法や対象物間の間隔
（3）対象物を示す記号
＂配置＂以外の情報は，取り決めがあるならば，記載してもよい。
配置情報には，電気的対象物が配置（予定）される場所の必要とする環境情報を盛り込む必要がある。
［1］基本文書
基本文書は配置図に不可欠なもので，例えば，建築文書，景観地図，現場平面図面などのことであり，体裁，線，文字などに関するJIS又はISOの製図規格に基づいて作成する。また，取り決めがあるなら，等角図又は透視投影図 で描いてもよい。
基本文書に必要とされる情報の内容は，据付け業務当事者間の取り決めに従うが，次のような電気設備の位置を特定する配置図を作成する為に必要なすべての情報を示す必要がある。
（1）地理学的な方位測定点。
（2）北方向指示記号
（3）建物の配置および外形，通行区域，サ一ビスネットワーク，アクセスの便，主要品目及び敷地境界
（4）平面図および断面図における，部屋，客室，廊下，開口部，窓，ドアなどの外形及び構造の詳細
（5）建造物に関連する障害物，例えば，構造上の鉄骨梁，柱など，
（6）床またはデッキの耐荷重，および切断，穴開け，又は溶接に関する制限
（7）リフト，クレーン，暖房，泠房，換気システムなどの特別な設備に必要となる空間
（8）電気設備据付けで重要となる他の設備
（9）危険区域
（10）既存の接地点
（11）利用可能な空間と必要なアクセス
（12）固定配置の制限
表9．4 据付作業に必要な情報（○必要最小限の情報 \oplus 追加情報）

作業，作業に必要な情報	文書の種類													
	$\begin{aligned} & \text { 全 } \\ & \text { 壆 } \end{aligned}$		$\begin{array}{\|l} \hline \text { 回 } \\ \text { 路 } \\ \text { 線 } \end{array}$	$\begin{aligned} & \text { 組 } \\ & \text { 図 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 配 } \\ \text { 䩉 } \end{array}$	$\begin{aligned} & \hline \text { ケ } \\ & 1 \\ & 7 \\ & \text { 先 } \\ & \text { 経 } \\ & \text { 図 } \end{aligned}$	$\begin{aligned} & \text { 接 } \\ & \text { 地 } \\ & \text { 平 } \\ & \text { 㭡 } \end{aligned}$	$\begin{aligned} & \text { 据 } \\ & \text { 侣 } \\ & \text { 線 } \\ & \text { 隹 } \end{aligned}$	$\begin{aligned} & \text { 接 } \\ & \text { 続 } \\ & \text { 書 } \end{aligned}$		$\begin{aligned} & \hline \text { 部 } \\ & \text { 品 } \\ & \text { K } \\ & \text { 下 } \end{aligned}$	$\begin{aligned} & \text { ラ } \\ & \text { べ } \\ & \text { M } \\ & y \\ & \text { r } \end{aligned}$	$\begin{aligned} & \hline \vec{テ} \\ & 1 \\ & \text { 多 } \\ & \text { シ } \\ & 1 \\ & \text { r } \end{aligned}$	据 付 指 示
単一品目の設置														
概略取付け場所		\oplus			\bigcirc	\oplus		\bigcirc						\oplus
場所の縮尺		\oplus			\oplus	\oplus		\oplus						\oplus
品目の種類	\oplus	\oplus			\bigcirc			\bigcirc						\oplus
品目の形式指定	\oplus	\oplus			\oplus			\oplus			\bigcirc			\oplus
参照指定	\oplus	\bigcirc			\bigcirc			\bigcirc			\bigcirc	\oplus		
ケーブル及び導体の布設														
形式	\oplus	\oplus			\oplus	\oplus	\oplus	\oplus	\oplus	\bigcirc				\oplus
長さ										\oplus				
終点	\oplus	\oplus			\oplus	\bigcirc	\oplus	\bigcirc	\oplus	\bigcirc				
ルート		\oplus			\oplus	\bigcirc	\oplus	\oplus		\oplus				\oplus
参照指定	\oplus	\oplus			\oplus	\bigcirc		\oplus	\oplus	\bigcirc		\oplus		\oplus
特殊処理										\oplus				\oplus
ラベル														
場所							\oplus					O		
識別												\bigcirc		
定格												\bigcirc		
接続作業														
端子指定	\oplus		\oplus		\oplus		\oplus		\bigcirc					
参照指定	\oplus		\oplus				\oplus		\bigcirc	\oplus		\oplus		
心指定	\oplus		\oplus						\bigcirc					\oplus
特殊工具又は手順									\oplus				\oplus	\oplus
ケーブル種類	\oplus		\oplus				\oplus		\bigcirc					\oplus
検査，目視														
場所	\oplus	\oplus		\oplus	\oplus	\oplus	\oplus	\oplus		\oplus		\oplus		\oplus
指定	\oplus	\oplus		\oplus	\oplus		\oplus	\oplus	\oplus	\oplus		\oplus		\oplus
接続	\oplus		\oplus				\oplus	\oplus	\oplus					\oplus
材料又は部品の種類	\oplus				¢		\oplus	\oplus			\oplus			\oplus

備考 配置図には，電気設備又は構成部品を配置する区画の寸法又は据付け対象物を記

作業，作業に必要な情報	文書の種類													
	$\begin{array}{\|l\|} \hline \text { 全 } \\ \text { 図 } \end{array}$			$\begin{array}{\|l\|} \hline \text { 組 } \\ \hline \text { 図 } \end{array}$	醌	$$	$\begin{aligned} & \text { 接 } \\ & \text { 地 } \\ & \text { 苹 } \\ & \text { 䁽 } \end{aligned}$	$\begin{aligned} & \text { 据 } \\ & \text { 侣 } \\ & \forall \\ & \text { 線 } \end{aligned}$	$\begin{aligned} & \hline \text { 接 } \\ & \text { 続 } \\ & \text { 書 } \end{aligned}$		$\begin{aligned} & \hline \text { 部 } \\ & \text { 品 } \\ & \text { K } \\ & \text { ス } \end{aligned}$	$\begin{array}{\|l\|} \hline ラ \\ \text { ミ } \\ \text { N } \\ 1 \\ \text { ス } \end{array}$	$\begin{array}{\|l\|} \hline \vec{r} \\ 1 \\ \text { 名 } \\ \text { シ } \\ 1 \\ 1 \end{array}$	据
現場での設備配置準備														
屋外場所		\bigcirc			\bigcirc		\oplus	\oplus						\oplus
屋内場所					\bigcirc		\oplus	\bigcirc						\oplus
基準点		\bigcirc		\bigcirc	\bigcirc		\oplus	\bigcirc						
距離		\oplus		\oplus	\bigcirc		\oplus	\oplus						\oplus
対象物の主要寸法		\oplus		\oplus	\bigcirc			\oplus					\bigcirc	
固定情報													\bigcirc	\oplus
ケーブル布設準備														
屋外場所		\bigcirc			\bigcirc	\bigcirc								\oplus
屋内場所					\bigcirc	\bigcirc		\oplus						\oplus
基準点		\bigcirc			\bigcirc	\bigcirc		\oplus						
経路		\oplus			\oplus	\bigcirc		\oplus						\oplus
ケーブル又は導体支持具の配置														
経路		\oplus		\oplus	\oplus	\bigcirc		\oplus						\oplus
距離		\oplus			\oplus	\bigcirc								\oplus
寸法						\oplus					\oplus			\oplus
材料又は部品の形状					\oplus	\oplus		\oplus			\bigcirc			\oplus
指示					\bigcirc			\oplus				\oplus		\oplus
ユニット組立（現場内）														
部品の識別				\bigcirc	\oplus						\oplus	\oplus		\oplus
部品の場所				\bigcirc	\oplus									\oplus
特殊工具又は手順				\oplus	\oplus						\oplus		\bigcirc	\oplus
組立及びユニットの配置														
屋外場所	\oplus	\bigcirc			\bigcirc	\oplus	\oplus							
屋内場所	\oplus				\bigcirc	\oplus	\oplus	\bigcirc						
特殊工具又は手順														\oplus
識別	\bigcirc	\bigcirc			\bigcirc			\bigcirc			\bigcirc	\oplus		
最大荷重耐量（kg／m²）					\oplus			\oplus						\oplus
質量					\oplus			\oplus			\oplus		\oplus	\oplus

（13）取付方法
（14）ケ一ブル経路エリア
（15）既存のアクセスポイントと輸送•搬入ル一ト
（16）環境条件
基本文書は，電気以外の設備，家具，装飾品などの品目情報を除い て電気設備設計に利用するのがよい。もし，電気関係以外の情報が電気設備設計に必要なら，別々の基本文書として作成するのがよい。
紙に書かれた文書に対し，コントラスト改善手法で，基本詳細部分に灰色インク又は別の色を使用してもよい。こうした手法は，例えば，コピ一又は印刷後の最終文書の読み易さに影響を与えない範囲でだけ使用する必要がある。
［2］CADシステム使用時のガイドライン
様々な階層の結びつきの可能性は別として，その階層に置く種類毎に， CADシステムが認める場所へ，個別にシステムを保存するのが望まし い。すべての階層の基本は，前項［1］の基本文書の規定に従う必要が ある。
電気的設備の詳細には，他システムの詳細を混入させないほうがよ い（次項［3］参照）。但し，電気以外の設備，例えば，水道管の位置など については考慮するのがよい。例えば，原図である簡単な建築図は基本階層となる。ケ一ブル経路は別の階層に位置し，照明システムは第 3階層に，そして配電盤及び他の電気材料の配置は第4階層に位置づ けられる（図9．20）。
［3］レイアウト
配置文書は，含まれる情報を容易に判読できるような明瞭なレイアウ トにする必要がある。その情報が文書理解にとって及び電気的設備そ のものの組立てにとって重要である場合にのみ，電気以外の対象物に ついて記述する。不要な詳細情報による文書の過密化傾向があるなら，特にこれは重要である。電気以外の対象物を記述する場合は，電気的対象物と明確に区別がつくようにエ夫する必要がある。
適切な尺度の選択及び表示方法の選択で，文書の過密化を避ける必要がある（9．3．4［2］参照）。記載すべき情報は他の情報と混同しない所，例えば，すべての文書の不動の場所（できるならば表題欄の上側右端）

（a）建築基本図

（b）ケーブル経路を追記した基本図

（c）照明設備を追記した基本図

（d）配電盤及び通信用キュービクルを追記した基本図図9．20階層技術の使用例

に配置する必要がある。
必要な情報が，他の文書，例えば，据付け説明書に記載される場合は，それらの引用文を文書上に明記する必要 がある。
9．3．4 構成部品及び接続の図表示
［1］構成部品の表示
通常，電気的構成部品は，単純化した外形形状又は図記号で表示される。
据付け文書に使用する図記号は，JIS C 0617を使用する必要がある。
（注．屋内配線図記号（JIS C 0303は日本独自の記号で，国際的にはJIS C 0617－11の記号を使用する）
取付け方法や取付け指示は，文書に記載する必要がある。単一品目又は構成部品が，異なる取付け方法又は取付け指示要求がある場合は，JIS C 0617に準拠した修飾記号又は図記号のそばに構成部品を取り付ける為の文字 コ一ドを添えることで指定できる。構成部品を取り付ける為の文字コ一ドの例は次のとおりです。

H ：水平（並べて取り付けた構成部品）
V ：垂直
F ：同一平面（凹型）
S ：表面
B：床（底面）
T ：天井（上面）
UB：フリーアクセスフロアへの取り付け
UT：仮天井への取り付け。
取付け方法の文字コ一ドは，IEC60617において，特定の記号に関連してアプリケーションノートで標準化されること がある。例えば，一部の記号では，上記のリストで使用されている文字コ一ドが制定されているアプリケーションノート A00266を参照することになる。標準化されていない文字コ一ドを使用する場合は，文書又は補足文書で説明する必要がある。
更に複雑な場合は，必要とする分離図（小さな略図）や記述を用いてもよい。
記号表示は，JIS C 1082－1に従って行う必要がある。
電気的主要構成部品を示す標準の記号がない場合は，又はあってもその記号の使用に適さない場合は，その主要構成部品の単純化した外形図を用いて表示してもよい。

電気以外の構成部品の記号が必要な場合は，関連JIS又はISO規格の中から選定する必要がある。
表9．5は，線図にJIS C 0617－11を使用した，据付け線図における記号の推奨使用例を示す。これらの記号は，接続線を省略した据付け図にも同様 に使用してもよい。
［2］接続線，経路
導体を表示する必要がある場合は，JIS C 0617及びJIS C 1082－1に規定 する単線表示で描くことができる。複雑な結線の詳細表示をする必要があ る場合は，複線表示のみを使用するのがよい。
接続線は，曲線を使用できることに加えて，6．5．4に記載されている規則に従うものとする。
接続線は，景観又は構造物及び建築物の詳細を示す線と明確に区別す る必要がある。例えば，基本文書の中で用いるの
とは異なる線の太さ又はインクを使用してもよい。
別の方法としては，壁の部分にハッチングやシェ
一ディング（濃淡）の使用もある（図9．22）。
多数の平行する接続線で，線図を過密化する傾向がある場所は，束ねる簡略化手法（6．5．4［7］）又は線の中断（6．5．4［5］）の使用を推奨する。
接続線が存在することを示すもう一つの方法は，適切な参照指定（品目指定）の使用がある。
［3］参照指定の使用
参照指定（品目指定）システムが必要な場合（主として複雑 な設備の場合）は参照指定を図又は線図中の各記号に隣
接して示す必要がある（図9．22）。
参照指定は，JIS C 0452に従って行う（6．2．2参照）。
［4］技術データ
個々の構成部品の技術データ（定格）は，通常部品リスト に記載する必要がある。明確にする為に又は多くの品目と識別する為に，特性値を記号及び文書の参照指定（品目指定）に隣接して記載してもよい（図9．21）。
JIS C 1082－1の例外としてデータは，図のレイアウトで許 される場所に配置してもよい（図9．22（c））。 9．3．5 現場における設備配置文書

図9．21技術データの記載例

表9．5記号の使用例

	通信用コンセントのそば に取り付けた3個ロコン セント
k^{3}	
	側壁に取り付けたスイッ チ付き3個ロコンセント ＂ H ＂は水平取付け表示
	横方向の露出配線導線 に取り付けた単梀スイッ チ及びコンセント
	2個の照明用コンセント。一つは分岐による壁付け コンセント，他の一つは天井取付けコンセント
	水平取付けによる2個の スイッチとコンセント

図9．22 配置文書における参照指定の使用例

図9．23 現場配置図の例（産業プラント）

品の準備として，経路の正確な記載のために，参照点の符号化表示をし てもよい。
［4］接地平面図（接地図，接地線図）
接地平面図（接地図，接地線図）は，現場平面図を基に作成してもよい。接地平面図（接地図）における接地電極及び接地棒の配置については，断路用リンク及び接地対象重要構成部品（例えば，変圧器，電動機，遮断器など）の接地点と一緒に記載する必要がある。
接地線図には，接地導線もまた記載する必要がある。必要に応じて，寸法や指定，接続及び導体と電極の敷設又は打ち込み深さについて記載する必要がある。
避雷保護システムは，接地平面図として示してもよいし，又は別紙に避雷保護図又は線図として示してもよい。
9．3．6 建造物及びそれ以外の対象物内部の設備配置文書
［1］配置図（据付け図）
配置文書は，建築図を基にしている。電気的設備の構成部品は，記号 の使用又は9．3．4［1］に従った単純化した外形によって示す必要がある。記号は，構成部品の近くに記載する。配置図には，必ずしも，構成部品間の接続についての情報を盛り込まなくてもよい。
詳細情報としては，正確な距離や寸法を必要としてもよい。その場合，詳細図又は仕様書で，その文書を補足してもよい。設備の特定及び指定の情報を含めるべきである。
現場配置図が利用できない場合は，建造物の屋外設備をこのような配置図へ記載だけしてもよい。
図9．24に，キュービクルの取り付けパネルの配置図の例を示す。
［2］据付け線図

図9．24 配置図の例
（キュービクルの取り付けパネル）

据付け線図とは，構成部品の配置及び構成部品間の接続状態を共に記載した配置図（据付け図）である。
据付け線図中の接続線は，各回路に接続されている構成部品とその接続順序を示します。露出取付けの場合，又 はダクトやコンジット（導管）を使用する場合は，接続の実際の接続経路を示す必要がある。
［3］ケ—ブル経路図
ケ一ブル経路図は，ケ一ブルトレイ，ダクト，支持具などや，実際のケ一ブル又はケ一ブル束が記載してある建築図を基にしている。複雑化したケ一ブル設備の場合は，必要に応じて，ケ一ブル敷設作業を助ける為の参照指定（品目指定）を追加する必要がある。寸法が表示されていない場合は，附属の部品リストに，指定と共に寸法を追記する ことが望ましい。
［4］接地図（接地線図）
接地図（接地線図）は，建築図又はその他の建築上の図を基に作成してもよい。接地図（接地線図）は，一系統の接地システムだけ表示する必要がある。
接地図には，接地極，接地棒及び接地対象重要構成部品（変圧器，モ一タ，遮断器，キュービクルなど）の接地点の配置を，並びに，接地用の導体及び接続について記載する必要がある。
必要に応じて，寸法や指定，接続及び導体の敷設と固定情報，及び電極の据付けについて表示する必要がある。 9．3．7 設備構成品目の配置文書
［1］組立図
組立文書は，組立部品の組立方を示している。組立図は，殆どの場合，一定の尺度で描かれるが，透視投影法又 は軸側投影法若しくは同様な方法で描いてもよい。組立図は，組立部品の形状，取付け場所と部品との関係及び部品の特定について記載する必要がある。
組立作業に特殊工具又は機材が必要な場合は，このことを組立図に記載する必要がある。
［2］配置図
配置文書には，例えば，簡略化した組立図の書式で，記号又は単純化した形状を追記し，品目の配置及び設備又 は品目の構成部品を記載する。設備の特定情報及び指定について追記する必要がある。
9.4 部品リスト

部品リストは，システムまたは製品の構成要素をリストし，場合によっては，それらを指定する。
部品リストは，便宜上，次の二つに区別できる。
（1）「構造ベース」の部品リスト
（2）「文書ベース」の部品リスト
これら以外に，例えば，設計やエンジニアリングプロセスで使用されるモーターリストやバルブリストなどの「カテゴリ ベース」の部品リストがある。このようなリストはJIS規格の対象ではないが，これらに対しても，ここで示すものと同様 の原則が適用できる。
構造ベースの部品リストは，適用する構造に応じて，更に分類でき，例えば，次のようなものがある。
（1）パーツリスト 製品指向で構造化した構成要素によるリスト
（2）機能リスト 機能指向で構造化した構成要素によるリスト
（3）位置リスト 位置指向で構造化した構成要素によるリスト
（4）その他
部品リスト本体は，含まれる部品を示すリスト品目を表形式で表示するもので，次のいずれかに よる（図9．25）。
（1）独立した部品リスト文書。
② 例えば，組立図における部品欄のような幾つ かの要素からなる文書の一部。
見出し部分は，部品リスト本体の列を定義し，列 には1つ又は複数のデータ要素の値を表示する。
部品リストの一つのリスト品目は，一つの構成要素を表し，更にこれに関係するデータ要素の選択値を表示する。
部品リストの範囲内の各構成要素は，一つのリ スト品目で表される。
9．4．1 部品リスト本体の要求事項

［1］部品リストの分類

JIS規格で規定する部品リストの分類は，次のとおりである。
分類A
各リスト品目が構成要素の形式を表し，更にその形式の数量を表している部品リスト（表9．7）
備考 分類Aは，＂要約版リスト＂として扱われる。数量は，多くの場合，各々の形式で1よりも多いので，各構要素の部品番号を＂キー＂として使用できる。この部品リストの分類は，ISO 10303－44で＂BOM（材料表）データ構造＂ と呼ばれている。
分類B
各リスト品目が構成要素のオカレンスを表している部品リスト（表9．8）
備考 分類Bは，＂詳細版リスト＂を対象としている。各リスト品目における数量は，通常，1であり，各構成要素の参照指定を＂キ一＂として使用できる。この部品リストの分類は，ISO 10303－44で，＂部品リストデータ構造＂と呼ば れている。

幾つかの同じ構成要素を一まとめにして，その仕様を明示する必要があり，文書作成の文脈上，その各構成要素間で区別する必要がない場合，この構成物のセットを一つのオカレンスとみなすことができる。この場合，指定される数量は，1よりも多くなる。例えば，交通信号を構成するために組み立てられる数百個の発光ダ イオードなどである。
分類Aの部品リストは，個別のオブジェクトの機械設計に使用されることが多い。特に，部品リストが一つの構造し ベルしか対象にしていない場合に多くみられる。
分類Bは，接続の目的など，ある形式のオカレンスをそれぞれ識別する必要がある電気，流体及びその他総合的 システムに使用されることが多い。
［2］指定されたオブジェクトとの関係
部品リストを含めて設計及びエンジニアリングのあら ゆる文書は，一つのオブジェクトに関係付ける必要が ある。
部品リストは，そのオブジェクトの構成要素をリストし，指定するものとする。各構成要素は，リスト品目で指定 する。
部品リストは，一つの構成レベルだけでもよいし，一つ又は複数の下位しベルを含む構成レベルでもよい。 ［3］リスト品目の内容
各リスト品目の基本的目的は，構成要素のオカレンス （分類B）を，又は同じ形式の各識別グループ（分類A）を，部品と関連付けることである。
オカレンスは参照指定又は品目参照番号で識別し，部品は部品番号又はグローバル識別番号で識別する。
更に，オカレンス及び部品に関する他の情報は，部品 リストをより分かり易く，使い易いものにする為に提供さ れることがある。
各リスト品目には，表9．6で指定した必須情報を含む必要があり，また，条件付情報又は選択可能情報を含 めることがある。

表9．6構成オブジェクトのリスト品目に含まれる情報

諸元項目	分類 A	分類 B
品目参照番号	必須	-
数量	必須	条件付
参照指定のリスト	条件付	-
参照指定	-	必須
参照指定セット	-	条件付
用途	-	条件付
オカレンスに開する技術データ	-	条件付
オカレンスに開する参照情報	-	条件付
部品番号，又は ククローバル識別	必須	必須
部品名称	必須	必須
形式識別	必須	必須
仕坊を表す技術データ	条件付	条件付
性能を表す技術データ	条件付	条件付
質量，寸法	選択	選択
情報に関する参照	条件付	条件付
注意	選択	選択

備考 以下の各用吾は，この表では次の意味を表している。
必須＝常に必要とされる。
条件付＝もし，情報が利用できれば必要。
選択＝使用者の選択。

表9．7 分類Aの部品リスト文書の例

備考1．この要約は，三つの同一のシスデム（例えば，＝W1＝P1，＝W1＝P2，＝W1＝P3）を包含する。
2．各リスト項目の数量が複数であることが多いため，通常はこのリストに参照指定を記さない。
3．この例は，文書形式又は表題ブロックの要件を規定するものではない。
表9．8 分類Bの部品リスト文書の例

$\begin{aligned} & \text { 糹照指定 } \\ & =\mathrm{W} 1=\mathrm{P} 1 \end{aligned}$	$\begin{gathered} \text { 参照批定 } \\ + \end{gathered}$	部品名；用途	形式名称	技術データ	犋崖	部品識放子		参照文書 \＆FS
						$コ ー ト ゙ ~$	部品番号	
Al	$\mathrm{Pl}+\mathrm{J1}$	マンマシンインタークェ ス機器						9AXA 99880／1
$\mathrm{Al}=\mathrm{HI}$	$\mathrm{Pl}+\mathrm{J} 1$	信号ランブ：起動						
$\mathrm{Al}=\mathrm{HI}-1$	$\mathrm{Pl}+\mathrm{Jl}$	ランブホルダ	05M2				SK 614 360－LE	
$\mathrm{Al}=\mathrm{Hl}-2$	$\mathrm{Pl}+\mathrm{JI}$	フィラメントランブ	BA15d	$5 \mathrm{~W}, 230 \mathrm{~V}$		UPC	3765498763139	
$\mathrm{Al}=\mathrm{S} 1$	$\mathrm{Pl}+\mathrm{J} 1$	押ボタン：起動	OKM30				SK 614311 －CF	
$\mathrm{Al}=\mathrm{S} 2$	$\mathrm{PI}+\mathrm{JI}$	押ボタン；停止	OKM30				SK 614311－CG	
$\mathrm{Al}=$ S3	$\mathrm{PI}+\mathrm{JI}$	スイッチ：手動•自動	ABGIO				SK 661 201－AB	
FI	S2＋G2	3䓧ヒューズ	SF400					9AXA 99880／2
Fl－I	S2＋G2	ヒュースカートリッジ	SL400	Size 3，160 A			SK 316 285－3	
F1－2	S2＋G2	ヒューズカートリッジ	SLL400	Size 3，160 A			SK 316 285－3	
F1－3	S2＋G2	ヒューズカートリッジ	SL400	Size 3，160 A			SK 316 285－3	
F1－4	S2＋G2	ヒューズソケット	ST400	Size 3， 160 A			SK 316 286－3	
Ml	L210＋R11	三相かご形電動機	$\begin{aligned} & \text { HXR } \\ & \text { 180SM4 B3 } \end{aligned}$	1465 回鳁／分，17 kW, $400 / 230 \mathrm{~Hz}$,	75 kg	MCOMP	R3ISMAOLI	9AXA 99880／3
Q1	S2＋G3	モータスタータ	DSB350				98653 97－A	9AXA 99880／2
W1		ケーブル		$\begin{array}{ll} \hline \text { H07RN-F5G10, } & 10 \\ \mathrm{~mm}^{2}, & 10 \mathrm{~m} \end{array},$		CCOMP	C12345－BCD	

担当部罢作成承認	XYZ 99－05－04 X．X． 99－05－05 N．N．	部品リスト 給水システム	$\begin{aligned} & \text { 文書指定 } \\ & \text { オブジェクト指定 } \\ & =\mathrm{W} 1=\mathrm{P} 1 \end{aligned}$	文書種類分類 \＆PB	
$\begin{aligned} & \text { プロジェクト名 } \\ & \text { 使用者 (会社) 名 } \end{aligned}$		システム製造業者名	文書秀号 9AXA 99879	$\begin{array}{ll} \hline \text { 改訂指標 }: ~: ~ D ~ \\ \text { 言語コード }: ~: ~ j a ~ \\ \hline \end{array}$	$\begin{array}{ll} \text { ページ } & : 1 \\ \text { 続き } & : 2 \end{array}$

備考 部品識別子の＂コード＂欄にあるMCOMPは，モータ製造業者名を表す。CCOMPは，ケーブル製造業者名を表す。

9．4．2部品リスト本体の配置

［1］一般事項

部品リスト本体は，表を用いる。列は，見出しで定義される。列の順番は，利用者のニ一ズ又は日常業務に応じて異なる。順序に関する特別な理由がない限り，以下の［2］及び［3］に挙げた順序で左から右へたどる。
一つの列で表示する諸元が一つしかない場合，その列の名前は，諸元項目と同じ（関連する言語で）にする必要が ある
一つの列に多くの諸元を表示する場合，適切な集合名称を選ぶ必要がある。
混乱が生じないのであれば，印刷された文書上で一つの列にまとめてもよい。
［2］部品リスト分類Aの欄
分類Aの列の名前は，次の列名が望ましい。
（1）品目参照番号
（2）参照指定（＂参照指定のリスト＂を含む。）
（3）数量
（4）部品名
（5）形式指定
（6）技術データ（単位を含め，諸元値の適切な選択を含む。）
（7）質量
（8）部品識別子（＂コ一ド＂及び＂番号＂又は＂部品番号＂を含む。）
［3］部品リスト分類Bの欄
分類Bの列の名前は，次の列名が望ましい。
（1）参照指定
（2）参照指定（参照指定セットの2番目の要素）
（3）説明（＂部品名＂及び＂使用方法＂を含む。）
（4）形式指定
（5）技術データ（単位を含め，諸元値の適切な選択を含む。）
（6）質量
（7）部品識別子（＂コ一ド＂及び＂部品番号＂を含む。）
JIS C 1082－1に基づいて参照指定の簡素化された表記を適用する場合（6．2．2［2］参照），参照指定列の列名のすぐ下に参照指定の共通部分を提示し，リスト項目の中で繰り返してはいけない。
参照指定の2番目の列は，参照指定セットの2番目の要素を意図している。
一つ又は複数の変遷を含む参照指定は，一つの完全な参照指定とみなし，列を分けてはいけない。
［4］リスト品目
リスト品目で提供される大量の情報は，数行を用いてよい。このような場合，読み易くする為にそれぞれのリスト品目を，横線などで，次のものと明確に分ける必要がある。
［5］リスト品目の並び順
部品リストを読み易くする為，リスト品目の並び順は，その部品リストに適用される構造で使用される参照指定又は品目参照番号に基づいて行う必要がある。並び順は，アルファベット順（アルファベット及び／又は数字）の昇順で行う ベきである。このことは，それぞれの構造レベルにおけるリスト品目がJIS C 0452－2において割り当てられた文字コ一ド（表6．1，表6．2，表6．3）で区分されることを意味している。
参照指定中の数字は，数学的な数値に従って並べる。
例 よい例：A1，A2，A10，A11，A20
悪い例：A1，A10，A11，A2，A20
部品リストが複数の構造レベルをカバーしている場合，二，十，一などの記号は，読者には明確な並び順上の意味 をもたない為，並び順は参照指定の中に含まれる記号の値（並び順に関する）にかかわりなく行われるべきである。
参照指定セットは，二つ以上の参照指定から構成される。1次の並び順のキ一として使用できるのは参照指定のう ちの一つだけである。そのセットのほかの要素は，＂その他の＂指定であり，2次，3次キ一として使用する。
9．4．3 部品リスト文書に対する要求事項
部品リスト文書は，文書の見出し又は表題ブロック及び部品リスト本体（ISO 7200参照）で構成する。
部品リスト文書は，例えば，組立図面，全体図，回路図，保守手順書，故障検出説明書などの幾つかの文書ととも に検討する場合がある為，個別の文書番号で識別し，文書種類指定コ一ド（6．2．5参照）で識別する。
部品リスト文書は文書種類分類の一つであり，多くの文書種類指定が用いられている。この数を減らす為に，＂部品リスト＂の文書種類指定だけを使用し，適用するオブジェクトを明記することや部品リストの目的を明記することが望ましい。
9.5 屋内配線図

屋内配線図は，屋内配線の設計図面，すなわち，建築物に設置される電灯•動力•通信•信号•防災設備などの図記号を平面図に配置し，機器間の配線及びこれらの取付け位置，取付け方法を示す図面で，配線工事の施工，設備の保守，工事用材料•器具の数量算出，工事量の算定などに用いられる。
建物の内部にある電気工作物によって生じる災害を防ぐために，電気設備技術基準（経済産業省令）や内線工事基準（日本電気協会）をはじめとして，事業者や施工者などが守るべき関連法令や技術基準が定められており，これ らの関連法令および技術基準に合致するように，屋内配線の設計や施工する必要がある。
屋内配線図は，実際の配線に従って描くが，簡素化の為，電線が何本あっても，単線で描かれる。しかし，実際の設備の状況を明確にする必要があるときは，実際の電線数で描かれる。また，施工にあたつては，単線で描かれた図（単線図）を実際の電線数に変えて（複線図に変換して）作業を行う必要がある。
屋内配線図には，次のような事項が示される。
（1）電気方式，幹線，分岐回路，電線の種類及び太さ
（2）開閉器や遮断器の位置及び容量，電力量計などの位置
（3）各幹線及び分岐回路が受け持つ区域，並びに受け持つコンセントのロ数など
（4）各分岐回路に付けられる電動機などの電気機器
（5）付記すべき事項
同一図面で増設•既設を表す場合には，例えば，増設は太線，既設は細線又は点線とし，明瞭に区別できるように する。尚，増設，既設を色別してもよいが，複写しても識別できることが必要である。
撤去の場合は，消去はせず，接続線などに×を付けて撤去したことを明確に示す。。
9．5．1 図記号
表9．9に，JIS C 0303の屋内配線図記号を示す。
図記号の大きさは，平面図の状況で異なってくるが，JIS C 0303では，良く使用される縮尺である $1 / 50,1 / 100$ ，及 び1／200に対して，表9．10，表9．11，表9．12のように例示されている。この寸法を参考にして，例えば，屋外灯などは少 し大きめにして強調する，文字が3文字以上のときは長方形の横幅を表9．12の2倍，2．5倍と調整するなど，全体が調

表9．9 屋内配線図用図記号（JIS C 0303：2000）

名称	図礼号	摘要			
		a）天井 ところ b）宋面 い。 c）奄線	べい配緗のうち天井ふと 内酸に一ー一を線に 出酸及び線及重休内配䫈 の種䅡を示す必要のある㙁 表1	ころ内配線 いてもよい の龱記号は 合は，表1 の杞号	区别する場合は，天井的 ーーーーを用いてもよ の記号を記入する。
露出跳絲		碞号	䉓澡の㮔如	淮号	
		IV		AE	第䋍用ケーフル
		HIV		${ }_{\text {TIVF }}^{\text {TIEV }}$	
		IC		CPEV	市内対ボリエチレン赩䛹 ビニルシースケーブル
		ow		CPEV－S	市内対术りエチレン施誂
		oc			$\begin{aligned} & \text { ヒ=ルンースケーフル(ン } \\ & - \text { ルトイン付き) } \end{aligned}$
		OE	$\begin{aligned} & \text { 屋外用ボリエチレン絶湶 } \\ & \text { 花錐 } \end{aligned}$	CPEV－SS	
		${ }^{\text {DV }}$			己支持的）
		PDC		FCPEV	
		cv		CPEE	
			スケーブル		フィ
		cvD		cree－s	$\begin{aligned} & \text { 市内対ボリエチレン䊒触 } \\ & \text { ホリエチレンー } \end{aligned}$
			スケーフル（俚じ2本のよ		フル（シールト付き）
		cvt		CPEE－SS	
					7 7 （自己支㭙形）
				CCP	
		cve			－7ル
				＠C－2V	高周波同柏ケーフル （ECX）
			》教）	S－＠C－FB	桌星放这受信星内用然泡
		vvF			$\begin{aligned} & \text { ポリエチレン䋓線ビニル } \\ & \text { シース同㹍ケーフル } \end{aligned}$
		vVR		sd	SDワイヤ
			シースイーフル（れ）	TOEV－SS	
		cvv			持矧）
		crv－s		mvvs	$\begin{aligned} & \text { マイクロホン用ヒニルコ } \\ & \text {-ド } \end{aligned}$
			違へい付き）	EBT	蝺杖タン軍話用ケーフ
		$\underset{\text { HP }}{\text { HPC }}$		TKEV	通倍月樓内年ーフル
		EM－IE		UTP	UTPケーフル
				$\stackrel{\text { OPT }}{ }$	光フアイバアーフル
		EM－IC		ITPEV	通信属内開术リエチレン
		Em－CE	600 V架穚ボリエチレン 	ITPEV－S	
			シースケーフル		婎憬とニルシースイーフ
		EM－EE			ル（シールト付き）
			スケーブル		
		EM－EEF	600 V ホリエチレン施蝺		

[^0]表9．9 屋内配線図用図記号（JIS C 0303：2000）（つづき）

名称	図記号	摘要
		i）フロアタクトの表示は，头による。 例－（F7）－（FC6） ジャンクションボックスを示す場合は，次による。 ー－（○ーー j）ケーブルラックの表示は，次による。 CR 又は \square サイズは僕記による。 k）金属タクトの表示は，次による。 MD 1）金属線びの表示は，次による。 －MM1 m）ライティングタクトの表示は，次による。 LD は，フィートインホックスを示す。 必要に必し，軍圧，極数及じ容量を弝入する。 例 \square －$-125 \mathrm{~V}-\overline{2}-15 \mathrm{~A}$ n）按地線の表示は，次による。 例 $\underset{\text { E } 2.0}{(1)}$ o）接地線と配線を同一管内に入れる場合は，次による。 例 2.0 E2．0（PF22） ただし，接地線の表示Eか明らかな場合は，䟕入しなくてもよい。 p）ケーブルの防火区画貫通部は，次による。
立上！引下将类通し	o'	防火区两貫通部は，次による。 立上り （6） 引下げ 〇 素通し
ブルボックス	\boxtimes	a）材料の種類，寸法を傍䟕する。 b）ボックスの大小及び形状に応した表示としてもよい。
ショイントボックス	\square	
VVF用ジョイントホックス	0	
接地端子	$\stackrel{1}{\square}$	医用のものは，Hを傍記する。
変地センタ	EC	医用のものは，Hを傍記する。
接地函	$\underline{1}$	a）按地䅜别は，次によって傍記する。 A係 E_{A} ，B種 E_{B} ，C秝 E_{C} ，D種 E_{D} 例 $\underset{=}{\perp} E_{A}$ b）必要に応じ，接地楅の目的，材料の㮔類，大きさ，接地抵抗値なとを傍記する。
受電点	ζ	引込口にこれを適用してもよい。

名称	凹記昜	摘要
		d）容量を示す場合は，ワット（W）\times ランフ数で傍記する。 例 $\bigcirc_{100} \bigcirc_{200 \times 3}$ e）屋外灯はとしてもよい。 f）HID奵の嵊頝を示す場合において，a）によりにくい場合は，容量の前 に次の記号を倍祋してもよい。
営光大	\square	 b）器具の秒穎を示方場合は，文字記号などを記入する。 e）器只の壁付及び床付の表示 2）床付は，Fを傍記してもよい。 d）容量を示す場合は，ワット（W）×ランブ数で伤記する。例 \qquad F40 －$-\mathrm{F} 40 \times 2$ e）器具内配線のつながり方を示す場合は，次による。例 f）器只の大小及び形状に応じた表示としてもよい。 例
非常用琞明 （建䑁基潅法によるもの） 白熱灯	－	a）器貝の種類を示す場合は，文字記号などを郤入する。 b）自熟灯を一般坚光大丁に組み込む場合は，次の図記号でもよい。 c）階段に設ける通路誘尊灯（虽光灯形）と兼用のものは，头の図記号でも
策光灯	\square	よい。 \square d）壁付は，Wを傍䛉してらよい。 W W
腾導灯 （消防法によるもの） 白熱灯	（	a）器具の種類を示す场合は，文字記号などを枵入する。 S c）階段に股ける非常用照明（蛍光大形）と兼用のものは，次の凶記号でも
蛍光灯	\square	d）通路誘導灯の避難方向表示は，必要に応じ，矢印を記入する。 e）壁付は，Wを傽記してもよい。 0_{w}－ f）片付は，Fを傍記してもよい。 g）連動式誤導灯用信号装洋を示す場合は，次による。

表9．9 屋内配線図用図記号（JIS C 0303：2000）（つづき）

名称	図㫛号	摘要
䉓動機	（M）	必要に応し，䉓気方式，龟圧，容噇なとを示す場合は，次による。例（M）${ }_{3.7 \mathrm{~kW}}^{3 \phi 200 \mathrm{~V}}$
コンデンサ	$\stackrel{1}{+}$	電動嘰の摘要を準用する。
䉓熟器	（H）	莗動機の摘要を準用する。
换気局	6	a）必要に灾じ，榞類（扉風機を含む）及び大きさを倸祀する。 b）天井付きは，次による。
ルームエアコン	RC	a）屋外ユニットは0，巽内ユニットばを傽紀する。 $R C$ RC \square b）必要に応し，電気方式，電圧，容量などを傍記する。
電磁弁	SV)	
電動升	（MV）	必要に応じ，電気方式，花圧なとを傍記する。
小形変圧器	(T)	a）必要に応じ，電圧，容量なとを傍記する。 b）必要に応じ，ベル変圧器はB，リモコン変圧器はR，ネオン変圧器は N ，蛍光灯用安定器はF，HID KJ （高効率放䉓灯）用安定器はHを傍記 なる。 $\bigoplus_{B} \oplus_{R} \oplus_{N} \oplus_{F} \oplus_{H}$ c）鲎光灯用安定器及びHID糽用安定器て，器貝に収めるものは，表示し ない。
整沎翌淫	\rightarrow	必要に応じ，種類，電圧，容量など傍記する。
沷電池	HH	必要に応じ，種頪，奄圧，容量などを傍記する。
発电機	（G）	必要に応じ，発電袎は，電気方式，電圧，容㒸及び原動機は，種䅡，出力などを倠記する。

3．電灯•動力

名称	図記号	脑要
$\begin{array}{ll}\text { 一般用照明 } & \\ & \text { 白熱灯 } \\ & \text { HID奵 }\end{array}$	\bigcirc	a）器具の㮔類を示す場合は，文字記号なとを䟕入する。 b）a）によりにくい場合には，次の例による。 $\begin{aligned} & \text { ベンタント } \\ & \text { シーリング(天井迫付) } \\ & \text { シャンテリヤ } \end{aligned}$ 埋込器具 引掛シーリンクたけ（角） 引掛シーリングたけ（丸） e）器具の㙵付及び床付の表示 （0） \square 1）壁付は，壁侽を单るか，又はWを傍記してもよい。 2）休付は，Fを傍記してもよい。

3.3 点減器

表9．9 屋内配線図用図記号（JIS C 0303 ：2000）（つづき）

名称	龱礼号	捅要
	0	
4.2 コンセント		
名称	図昛号	捅要
$\begin{aligned} & \text { コンセント } \\ & \frac{\text {-般形 }}{\text { ワイト形 }} \end{aligned}$	$\frac{\theta}{\theta}$	 b）図記号 \because は，（8）で示してもよい。 c）夫井に取り付ける場合は，次による。 （1）$>$ d）床面に取り付ける場合は，次による。 f）定格の表し方は，次による。 1） 15 A 125 V は，傍記しない。 2） 20 A 以上は，定格電流を傍記する。 例 $\underbrace{20 A}_{20 A}$ 3） 250 V 以上は，定格奄圧を傍記する。 例 $\mathcal{2} 20 \mathrm{~A} 250 \mathrm{~V} \Leftrightarrow 20 \mathrm{~A} 50 \mathrm{~V}$ g） 2 口以上の場合は，口数を傍記する。 例 θ^{2} 2 h）3極以上の場合は，樗数を傍記する。 例 $\underbrace{3 P} \quad{ }^{3 P}$ i）種類を示す場合は，次による。 拔け止め形 j）防雨形は，WPを傍記する。 〇WP k）防塂形は，EXを傍記する。 § Ex 1）医用は，Hを傍記する。 〇H 〇LK
非掌用コンセント （消防法によるもの）	（1）	

名称	図記号	摘要
圧カスイッチ	\bigcirc_{P}	
フロートスイッチ	O_{F}	
フロートレススイッチ㡀㮀	\bigcirc_{LF}	施函数を筫記する。 $\text { 例 } \bigcirc$
䉓極切替函	$\square_{\text {LFC }}$	
タイムスイッチ	TS	
電力昜晾	(Wh)	a）必要に応じ，奄気方式，䉓圧，菓流なとを傍記する。 b）図記号 Whは，N－としてもよい。
䉓力㱏計 （箱入り又はフード付）	Wh	a）䉓力量計の摘要を準用する。 b）集合計器箱に収納する場合は，電力量計の数を倠記する。例 Wh
変流器（箱入り）	CT	必要に応し，货流を傍記する。
奄流制煖器	(ㄴ)	a）必要に応し，䉓流を傍記する。 b）箱入りの場合は，その旨を傍記する。
涺佗型敵	θ_{G}	必要に応じ，種類を傍記する。
漏裺火災登教 （消防法によるもの）	θ_{F}	必要に灾じ，擞別を傍記する。
地震感知器	（E）	必要に応じ，種類を傍祀する。

名称	図記号	摘要
		a）種類を示す場合は，次による。 配電船 \triangle 分䉓幋 制御䑰 実政数 OA幋 警報磐 b）直流用は，その旨を傍記する。 e）防災軍源回路用配龟船等の場合は，二重伞とし，必要に応し，種別 を傍記する。 例 \square 1褈 \square 2 程

名称	図記号	摘要
内線軍話機	(T)	ポタン電話機を示す場合は，BTを傍記する。 （T）${ }_{B T}$
加入奄話機	（1）	
公衆電話械	（1）	

表9．9 屋内配線図用図記号（JIS C 0303：2000）（つづき）

名称		図施誓	挍要
部光器	一数形	ϕ^{1}	定俗を示す场合は，次による。例 ${ }^{1} 800 \mathrm{w}$
	ワイト形	$*$	
リモコンスイッチ		$\bullet_{\text {R }}$	a）別置された矿勝表示䋆は，Oとする。 例 O_{R} b）リモコンスイッチであることが明らかな場合は，Rを省略してもよ い。 c）リモコンスイッチの秝類を示す場合は，次による。 RM（多重伝送用） RG（グルーブ制御用） －RP（バターン制御用）
リモコンセレクタスイッチ		\otimes	点淢回路数を傍記する。 例 － 9
リモコンリレー		A	a）リモコンリレーを垁合して取り付ける場合は，ロス を用い，リ レー数を傍記する。 例 Tス 10 b）ターミナルユニット付は，T／Uを傍記する。 －T T／U

\begin{tabular}{|c|c|c|}
\hline 名称 \& 図紀号 \& 脑要 \\
\hline 開閭器 \& \[
\mathrm{s}
\] \& \begin{tabular}{l}
a）箱入りの㘯合は，箱の村蘋なとを僢記なる。 \\
b）楅数，定格菓流，ヒュース定格范流なとを浐記する。
\[
\text { 例 } S_{+30 \mathrm{~A}}^{2 \times 3 \mathrm{~A}}
\] \\

\[
\left.{ }^{\text {例 S }} \text { S }\right]^{2 p 30 A}
\]
\end{tabular} \\
\hline 配線用適断器 \& B \& \begin{tabular}{l}
a）箱入りの場合は，箱の材質なとを伀記する。 \\
b）板数，フレームの大きき，定格䉓旅なとを仿記する。 \\
例 \(\mathrm{B}_{125 \mathrm{~F}}^{32 \mathrm{AF}}\) \\
c）モータブレーカを示す垛合は，次による。 \\
B \(\mathrm{M}^{\text {又泪 }}\) \\

\end{tabular} \\
\hline 㴜電遮断断器 \& E \& \begin{tabular}{l}
a）箱入りの場合は，箱の材質などを偣記する。 \\
 なと，颌偩哬保筿なしは，䓧数，定格電流，定格感度軍流などを傍弘 する。 \\
過負荷保檴付の例 \\
過负荷保淯な

\square 2 PaAF
150 mA
10 ma ${ }_{35 \mathrm{~mA}}^{2 \mathrm{P}}$

c）逆負荷保護付は，BEを用いてるよい。

d）閅記号 E は $\mathrm{S}_{\mathrm{ELCB}}$ としてるよい。
\end{tabular}

\hline 菓酸則际器用押しホタン \& $\bigcirc{ }^{\circ}$ \& 磁認表示刘付の場合は，Lを浐記する。

$$
\bigcirc_{B L}
$$

\hline
\end{tabular}

名称	凶㫛号	摘要
袮合アウトレット	θ	a）塗付は，壁例を琻る。 b）床面に取り付ける場合は，次による。 c）二本床用は，次による。 d）各器具を明示する場合は，次のように表示してもよい。 例 DOOCO （壁付） DOOC （二重天用）
ルータ	RT	図記号 RTは，ひ－夕夕してもよい。
枼綵装涌（ハフ）	HUB	必要に灾じ，ポート数を傍祀する。 例 HUB
情報用機器収容箱	\square	必要に応し，機器記号を記入する。
5.2 敕報•呼出•表示・ナースコール設備		
名称	図記号	摘要
押しホタン	0	 b） 2 個以上の場合は，ポタン数を傍記する。例 \bullet_{3} e）ナースコール用は，\bullet_{N} とする。 d）復㷌用は，\square_{R} とする。
暒り抑しポタン	（	ナースコール用は，$\bigcirc_{\text {O }}$ ¢ ¢す。
ベル	\square	䇾報用と時報用とを区別する場合は，次による。 翌報用 \square A 時報用 \square
ブザー	\square	警铛用と時報用とを区別する場合は，决による。 䇾乵用 \square 時報用 \square
チャイム	D	
警報艇	－	
ナースコール用受信撃（親機）	NC	$\begin{aligned} & \text { 窓数を旃記する。 } \\ & \text { 例 } \mathrm{NC}_{10} \end{aligned}$
ナースコール用子機	N	
表示器（䇥）	\square	$\begin{gathered} \text { 空数を偙記する。 } \\ \text { 例 Ш- } \end{gathered}$
表示スイッチ （発信器）	\bullet	表示スイッチ盤は，次によって表示し，スイッチ数を傍記する。 例 \square 10

表9．9 屋内配線図用図記号（JIS C $0303: 2000$ ）（つづき）

名称	龱記号	墒罗
ファクシミリ	FAX	
絮换器	0	
保安器	d	```侧 bd }\frac{3}{5```
デンタル回絲效效发是	DSU	
ターミナルアタブタ	TA	
就子䌦	\square	a）付数（实装／容量）を伤祋する。 例 \square 30 P
本配蝺媻	MDF	
中開配絓整	IDF	
交换機	PBX	
ホタン奄话主装翟		形式を隼入する场合は，次による。 例
局紷中維台	ATT	
局綵表示僌	\square	
時分制回綵多重化域要	TDM	
$\begin{array}{\|l} \text { 通信用アウトレット } \\ \text { (䉓詰用アウトレット) } \end{array}$	－	
䘹縶用アウトレット	（1）	a）壁付は，堅唰を餘る。 b）床面に取り付ける場合は，决による。

表9．9 屋内配線図用図記号（JIS C 0303：2000）（つづき）

名称	図記号	摘
表示灯	\bigcirc	 b）ナースコール用は，次による。 O_{N}

名称	図記号	摘要
子時計	\odot	a）形状，峨䅨などを示す場合は，その旨を傍記する。 b）アウトレットたけの場合は， c）スビーカ付子時神は，次による。 とする。
時報子時部	5	子時計の摘要を準用する。
竌時計	（1）	時計監視积に親時計を組込みの場合は，（1）とする。

名称	龱記号	摘要
スピーカ	©	a）壁付は，壁僻を奥る。 b）形状，秝類を示す場合は，その旨を伤記する。 c）アウトレットたけの場合は，次による。 d）方向を示す場合は，次による。 e）ホーン形スビーカを示す場合は，次による。 f）防滴形は，WPを傍記する。 （D）Wp
ジャック	(J)	係彞を示す場合は，次による。 マイクロホン用 スビーカ用 （ $)_{M}$ （ $)_{S}$
コネクタ	（C）	a）種颣を示す場合は，次による。 マイクロホン用 スビーカ用 例（C） 3 （C）M （C） S
アッチネータ	\varnothing	
ラシオアンテナ		種穎を示す場合は，AM又はFMを傍舐する。

表9．9 屋内配線図用図記号（JIS C 0303：2000）（つづき）

名妳	凶珫号	揙要
4分酶器	-6	
2分酸器	－	
	©	a）哭付は，堮侽を緟る。 （ 0 © ${ }_{R}$ c） 2 弾子の場合は， 2 を傒記する。 © 2
テレヒ韻子	－0	
ヘッドエンド	0	图記号 は, HE としてもよい。
械器师容筹	\square	
ルーフココイ		
ルーブコイル式車両検出器	\square	
光綵式検知器（跗光哭）	θ	
光線式検知器（受光器）	\bigcirc	
管知縶	G	
信号大了（兩面）	\cdots	片面の圽合は，年とする。
	\otimes	
発券機	IN	
カードリーッタ	CR	
カーケート	GT	
カードエンコータ	CE	
表示奵（片面）	\square	峏值の场合は，$\square^{\text {a }}$ とする。

\footnotetext{
5．防災•防犯
5.1 自動火災報知設備

名称	図記号	摘
	θ	a）必要に応じ，種別を傍礼する。 b）埋込形は， 〇とする。
補㷌式スボット型感知器緮複合式スポット型感知器	θ	必要に応し，種別を傍記する。

名称	図詤号	摘要
起動䅗㵋	（F）	屋外用は，丰とする。
非常電話機	（E1）	
䇾致ニ゙ル	（B）	屋外用は，－¢ とする。
表示奵	0	
䉓源部（操作部）	EP	
非常警報洺管（ - 体形）	$\triangle B \times$	
警報サイレン	∞	
動知区城線	－ロロー	配總の図記号より太くする。
朝知区城番号		－の中に報知区域番号を記入する。

名称	図記号	摘要
起動ホタン	(E)	a）用途を示す場合は，次による。 カスス系消火没㨝（E）G水系消火設犕（E）w b）屋外用は，代とする。 c）防爆形は，EXを傍記する。
䇾報ベル	（B）	a）屋外用は，（B）とする。 b）防爆形は，EXを傍記する。
警坆フザー	(B2)	a）屋外用は， とする。 b）防粪形は，EXを傍記する。
サイレン	∞	a）屋外用は，WPを傍記する。 b）防录形は，EXを傍記する。
制锆䑤	匆	
表示繁	㞏	必要に応じ，窓数を傍硙する。 例 \square 3
表示奵	0	始動表示灯と浲用する場合は，○SL．とする。

表9．9 屋内配線図用図記号（JIS C 0303：2000）（つづき）

名称		図記号	揨要
被助軍源		TR	
移報器		R	用途を示す場合は，次による。 警借会社などの機器非常放送消火装置消火栓防火戸•排煙なと その他 \square
差動スボット試験器		T	必要に応じ，偪数を傍記する。
付属記号	䅂端抵抗	Ω	例 $\square_{\Omega} \ominus_{\Omega} \nabla_{\Omega}$
	アナログ式	－	例 园。
	自動試験機能付	c	例 目c＊
	遠䧕侙験機能付	\triangle	例 $\nabla_{\Delta} \square^{\square}$
	アナログ式自動試験機能付	－${ }^{\text {c }}$	例 S．C
	アドレス付	A	例 S_{A}
機器収容箱		\square	a）消火栓箱に組込みの場合は，口【とする。 b）屋外用は， c）埋込形は， \square \square とする。 とする。
䇾茂区城線		$\underline{\square}$	配線の図記号より太くする。
管戒区域番号		\bigcirc	a）〇の中に警戒区城員号を記入する。 b）必要に応じ \bigodot とし，上部に警武場所，下部に警戒区域番号を記入 する。 例

名称	因記号	摘要
住戸用自火報受信機	IP	
表示奵	D	
火災表示奵	\otimes	
スビーカ	（1）	
ベル	（B）	显外用は，成とする。
回路試䭷器 （淮通試験装置）	（0）	
フザー	(B2)	用途を示す場合は，次による。 カス漏れ 自動断線警報 （B2）${ }_{G}$ （B2）A

表9．9屋内配線図用図記号（JIS C 0303：2000）（つづき）

名称	図記号	挍要
	©	
进動醄御器	\square	操作部をもつ场合は，とする。
動作区域莕号	$>$	－の中に動作区城番号を䟕入する。

名称	図記号	摘要
検知器	G	a）壁排形は，G とする。 b）分㒕型の検知部は，Gとする。 e）プザー付又はランプ付を示す场合は，次による。 $\begin{array}{ll} \text { フサザー付 } & \text { 固 } \\ \text { ランブ付 } & \text { G } \end{array}$ d）必要に応し，カスの桃類を傍記する。
検知区域警喰䓂翟	(B2)	a）屋外用は，風とする。 b）防塂形は，EXを傍記する。
咅声篤報装管	(1)	a）䫀付は，㘳㑡を塗る。 b）形状，種類を示す場合は，その旨を傍祋する。 e）アウトレットだけの場合は，次による。 d）方向を示す場合は，次による。 e）ホーン形スビー力を示す場合は，次による。 f）防满形は，WPを傍記する。 （1）WP
受信器	\square	
中継器	\square	a）複数個で一体の場合は，個数を傍記する。 例 \square $\times 3$ b）ガス漏れ表示奵の中継器は，
表示灯	0	
警戒区城線	－ロロー	配線の図記易より太くする。
䇾戒区城番号		入の中に䡙知区域番号を記入する。

表9．9 屋内配線図用図記号（JIS C 0303：2000）（つづき） 5.9 機械唁健段健

名称	龱記号	摘要
	\square	
入室採作器	\square	
䉓気綻	K	
朢蛝センサ	（1）	乗類を示す場合は，次による。 バツシナセンサ 磁気近接スイッチ ${ }^{2}$ リミットスイッチ シャッタ検知器 报理検知器 （1） カラス破㮦柍知器 © ${ }_{G}$

	名称	図記号	摘要
突针部	平面図用	（－）	
	立面区用	8	
避雷道棌及ひ楝上げ導体			a）必要に灾じ，材紏の種類，太さなとを僕記する。 b）接続点は，次による。
接地抵抗测定用端子		\otimes	接地用端子箱に収納する場合は，次による。
接地㮀		$\stackrel{1}{=} E$	必要に応じ，接地㮀の目的，材料の種類，大きさ，接地抵抗値などを傍記 する。

図9．26 単線結線図（a）から複線結線図（f）への変換手順
和するように微調整すると良い。

9．5．2 単線結線図，複線結線図

屋内配線図を用いて施工するときは，単線結線図を複線結線図に読みかえて行うことになる。ここでは，単線結線図から複線結線図に変換する手順を示す。安全性の理由で，電気器具は接地側，スイッチは非接地側に置かれる。 つまり，電気器具の片側の導線は接地側に接続され，他の導線は非接地側に直接，又はスイッチを介して接続され る。又，導線はジョイントボックス内で結線される。これらのことが分かっていれば，読みかえは難しくない。つまり，手順は以下のようになる。
（1）すべての電気器具の片側の導線をジョイントボックスを介して，電源の接地側と接続する（図9．26（c））。
② スイッチを介して電源と接続する場合は，電気器具の他方の導線とスイッチを，ジョイントボックスを介して接続する（図9．26（d））。
③ 3 路スイッチ又は4路スイッチを使用する場合は，3 路スイッチ間又は4路スイッチと3路スイッチをジョイントボッ クスを介して接続する（図9．26（e））。
（4）直結する電気器具からの導線（1）とは別の導線）及びスイッチからの導線を電源の非接地側とジョイントボックス を介して接続する（図9．26（f））。
結線に当たつては，例えば，スイッチとコンセントが同じ場所にある場合は，非接地側の導線の接続をスイッチとコ ンセントがある場所で行うなど，導線の本数を可能な限り最小にする配慮が必要である。尚，ジョイントボックス内の結線箇所には接続を示す黒丸（ ${ }^{(1) を \text { を印す必要がある。 }}$
9．5．3 配管•配線の表示
配線の図記号は，JISC 0303：2000 で規定されている（表9．9，図9．27）。
これは配管と配線を含めたものな ので，この配線記号に導線の種類，寸法，本数，電設管の種類，寸法な どを記入する必要がある。
隠ぺい配線記号は，コンクリ ートなどの埋込配管•配線記
号と同一で区別がつかないの で，施工図，詳細図などでは， その旨を技術データに併記す その旨を技術データに併記す
るなどで，明確にする必要が ある。
配線記号に導線の種類，寸法，本数，電設管の種類，寸法
配線記号に導線の種類，寸法，本数，電設管の種類，寸法
などを表示する方法は，図9．27のように配線記号の上に，先 ず導線の表示を，その後ろに電線管の表示を括弧＂（）＂で囲ん で書き込む。
1本の配管に多数の導線を通すときは，図9．27の右下の例
1本の配管に多数の導線を通すときは，図9．27の右下の例
のように，使用区別が分かるように配線を分けて記入する方 がよい。
導線の本数は，配線の図記号に導線の本数の斜線，又は，

図9．28 立上り・引下げの例

図9．27 配線の図記号と配管•配線の表示例

斜線に導線の本数の数字で示すが（表7．1の図記号03－01－02，03－01－03参照），本数が5本以上の場合は，読み難く なるので，数字のみで傍記するのが通例である。
配管の立上り・引下げは，図9．28のように記入するが，同一階のみにおける立上り，引下げは記入せず，他の階に

亘る場合のみ記入する。
配線の図記号が交差する場合は，図9．29の例（1），（2），（3）で示した破線で囲んだ部分）のように，優先順位下位の配線は交差するところで分断して表す。優先順位付けは，以下のようにする。
①）1枚の平面図に電灯，コンセント設備などを描く場合，上からの見下ろした状態で描く。すなわち，優先順位は以下の順位になる。
天井隠ぺい配線 \rightarrow 露出配線（直天井）／天井内ころがし配線（二重天井）\rightarrow 床面露出配線 \rightarrow 床隠ぺい配線
（2）盤二次側は，盤に近い配線を優先する。
③ 配線本数が多いものと，少ないものとが交差する場合は，多いものを優先する。
9．5．4 屋内配線図の作成
［1］一般住宅電灯配線図
一般に平面図，分電盤結線図，照明器具姿図からなり，通信用を除いては配線に電設管を用いることは少なく， 600 V ビニル絶縁ビニルシースケーブル平形（VVFケーブル）を用いて配線することが多い。
電灯配線図作成に用いる建築図面は，建築設計に使用された図面を基にして作成する。できる限り，平面図，分電盤結線図，凡例，可能なら照明器具姿図も1枚の図面に記入できるのが望ましい。
屋内配線図の作成順序は概ね以下のようになる。
（a）電灯，コンセント，スイッチ，その他機器の図記号を取付位置に記入する。
電灯位置は，一般には部屋の中心とするが，部屋の用途に応じて配置するべきである。スイッチの取付位置は，出入口の扉の開き勝手に十分注意して決める。
（b）引込線及び接続点，積算電力量計，分電盤などの位置を記入する。
引込線及び接続点の位置（引込口）は，引込電柱と建物の外観を考慮して決め，次に積算電力量計の位置を決め る。分電盤の位置は，一般に勝手口，又は台所，食堂，廊下などのような場所が無難で，積算電力量計取付位置か ら余り遠くなく操作しやすい場所とする。
（c）回路を決める。
内線規程に基づいて分岐回路の容量及び幹線の太さを計算する。1分岐回路の容量が15A以下になるように構成 する。エアコンなどは専用回路となるので，それを考慮した分岐回路数とする。できるだけ電灯は電灯のみに，コンセ ントはコンセントのみの回路とするのが望ましいが，現実には難しい。
（d）配線をかき入れて，導線の寸法，本数（条数）を記入する。
実際に施工できないような配線は記入しない。また，スイッチの配線は，電源に最も近い電灯位置に接続するのが一般的である。VVFケーブル配線は実線で描き，必ずジョイントボックス，又は電灯アウトレットボックスで分岐配線す る。
（e）電灯器具の種類別記号及び容量，並びにスイッチとの関連符号を記入する。
照明器具姿図符号は，照明器具用アウトレットボックスの図記号中に記入するのが一般的だが，Oの中に記入で きない場合は，符号を傍記する。その場合，容量も傍記するので，符号と容量を見誤らないように配列よく記入する。一つの部屋にスイッチが数多くある場合や，一つのスイッチで数灯点滅する場合，又は階段灯のように上•下で点滅 する場合などでは，どのスイッチで点滅するのかスイッチと電灯の関係を符号で明記する。コンセントは，できるだけ そのコンセントで使用する機器の合計容量を傍記する。
（f）配線に回路番号を記入する。
一般住宅には，100V回路と 200 V 回路がある。回路番号は，100V回路は（1）•（2）…と，200V回路は，（1）•②）…と区別できるように別々の記号に変えて記入する。
（g）部屋名，並びに畳数などを記入する。
部屋名は，配線図を妨げないように注意し，余白部分に記入する。
（h）分電盤結線図を記入する。
分電盤結線図には，次のものを記入する。
（1）幹線及び分岐回路の電気方式
（2）開閉器及び遮断器の種類，極数，定格容量，ヒューズ容量
（3）幹線の配線・サイズ
（4）分岐回路の負荷設備容量，灯数及び個数
一般住宅は，基本的には単線結線図のみで良いが，複雑なものは複線結線図にした方が良い。
（i）凡例を記入する。
凡例は，JIS規格に従って記入する。特にJIS規格にないものは，必ず凡例に表記する。
（j）照明器具姿図（意匠図）を作成する。
照明器具姿図は，一般的なものは記号と仕様を記載すれば良いが，それだけでは表現できないものは，必ず器具 の姿図を記載する。一般照明器具の姿図の原図は製造業者から得られる。記載の方法は，見取図又は三角図法の いずれで描いても良い。
［2］一般事務所ビル電灯配線図
一般事務所ビルは，電線管を用いて施工する箇所が多く，負荷設備も複雑多岐である為，一般住宅用電灯配線図 のように電灯とコンセントを同一図面にかくことは少なく，それぞれを別の図面に描くことが多い。
（a）電灯，コンセント，スイッチ，その他の機器の図記号を取付位置に記入する。
一般事務所ビルは，蛍光灯器具が多いので，図記号の記入には注意が必要である。1灯用と2灯用の区別，多灯

用の場合の縮尺寸法などに十分注意して記入する必要がある。又，フロアコンセントやニ重床コンセントの設備を使用することが多いので，配置的に天井電灯器具と重なる場合があり，図面の複雑さを避ける為にも，コンセント図は別図とする方が良い。
出入ロのスイッチの取付位置は，両開き扉又は親子扉，扉の開き勝手を十分検討して決める必要がある。
（b）分電盤を記入する。
分電盤の位置は，幹線シャフト（EPS）の近くで分岐回路配線の施工し易い場所にすべきである。分電盤の図面寸法 は $5 \sim 10 \mathrm{~mm}$ 程度の見易い大きさがよい。
（c）回路を決め，配線を記入する。
一般住宅の場合と同様に，内線規程に基づいて分岐回路の容量及び幹線の太さを計算し，1分岐回路の容量が 15A以下になるように構成する。分岐回路数は接続機器なども考慮した数とする。できるだけ電灯は電灯のみに，コ ンセントはコンセントのみの回路とする。尚，階段の立上り，引下げ配管は，上下の連絡先を明確に記入する。
（d）電灯器具の種類別記号，容量，並びにスイッチとの関連符号を記入する。
一般住宅の場合と同様だが，一般事務所ピルの場合，一部屋の灯数が多いので，1灯毎に記号を記入せずに，平面図の外側に部屋名称，照明器具番号，台数を表に記入することで，繁雑さをなくすエ夫も必要である。又，特殊な場合を除いて，コンセントは，住宅コンセントのように負荷容量を記入せず，分電盤結線図に平均容量を個数倍して1分岐回路の合計容量を記入する。
（e）配線に回路番号を記入する。
一般事務所ピルは，分電盤の分岐回路数が多くなるので，電気方式別の回路符号を設け，凡例に明記する。 （f）部屋名を記入する。
部屋名を記入するのは一般住宅と同様だが，一般事務所ビルは，用途別のシャフトスペースが数多くあるので，必 ず略記号を用いて記入する（例：DS，PS，EPSなど）。
（g）分電盤結線図を作図する。
一般事務所ビルは，1フロアの面積が大きく，階数も多くなるので，分電盤の数が多くなる。従って，分電盤結線図 が各階配線図に描き切れないことがあり，全部をまとめた分電盤結線図表として作図することがある。記入すべき内容は，一般住宅用配線図の場合と同様である。
（h）幹線系統図及び配線図を作図する。
一般事務所ビルは，分電盤の数が多いので幹線の系統数も多くなる。図面の繁雑さを避ける為，別図で幹線配線図を作成した方が良い。その場合は，動力幹線も併せて記入することが多い。又，電源の種別及び接続系統を明確 にする為に幹線系統図を作図する。
尚，図面を描く際は，「電気設備に関する技術基準を定める省令」，「電気設備の技術基準の解釈」及び「内線規程」 に従って配線設計（工法及び経路の選定，並びに電圧降下等の計算と電線寸法の選定など）を行う必要がある。
（i）凡例を記入する。
一般事務所ピルは，各種電気設備配線図の凡例があり，電灯，動力というように，それぞれに凡例表を作成すると複雑になるので，1枚の図面にまとめて各配線図の全ての凡例を書き込むようにする。
（j）照明器具意匠図を作成する。
一般事務所ピルは，電灯照明器具もかなりの種類のものが使用される。照明器具姿図も，配線図の余白に描き切 れないことが多く，別図として姿図を作成するのが良い。又，一般カタログ製品のような器具であっても，間違いをなく す為に，姿図に記入するのが良い。
尚，作図の際に器具の材質を忘れずに記入する。特に化粧カバ一類は，カタログ番号，型番号などがあれば，それ らを記入するように注意する。
9．5．5 動力配線図
いろいろな動力設備があるが，一般事務所ビルに設備されるのは，空調動力，給排水動力，エレベータ，シャッター動力などである。これらの動力へ電気を供給する配線図と，その設備を制御監視する配線図を含めて，動力配線図 という。動力配線図は，基本的には前項の電灯配線図に準じて作成すれば良い。以下は，作成時に特に注意が必要な点である。
使用する建築図面は，屋内配線図と同様に，建築設計に使用された図面を基にして作成するが，電動機などの動力の位置を正確に記入する必要があるので，空調，給排水などの関係者から機械配置図などの資料を入手して行う必要がある。
（1）電動機，制御盤及び制御機器などの図記号の記入
JIS規格では，電動機は図記号（M）に電気方式，電圧，容量を傍記することとしているが，高圧電動機は，例えば，ニ重丸の中にMを記入した記号を用いると共に，この記号はJIS規格にないので，その旨を注記して，これと区別する。一般低圧電動機は，電気方式を記入せずに容量のみを傍記し，必ず凡例に表記する。電動機を記入する場合，機械図面を詳しく検討して正確な位置に記入する必要がある。
制御盤には，壁埋込，露出壁掛，自立型などの種類があるので，図面に記入する際は，盤本体の構造を十分に考慮して作図する。特に自立型は，盤の裏面点検，又は前面点検を念頭に，壁や機器から一定の距離を保った配置を考え，記入する必要がある。
（2）配管•配線の記入
動力設備工事には，金属管配線，ケーブル配線，金属ダクト配線などがあるので，それぞれの設計仕様に基づき，「電気設備に関する技術基準を定める省令」「電気設備の技術基準の解釈」及び「内線規程」に従って記入する。

機械室における配管•配線は，水，油，塵埃や汚れの清掃による浸水防止の為，できるだけ床配管を避け，天井埋込又は露出配管とするように留意する。又，電動機への配線には，「電気設備に関する技術基準を定める省令」，「電気設備の技術基準の解釈」及び「内線規程」に準じた接地線を必ず記入する。
遠隔制御配線は，制御盤と遠隔制御器及び監視装置の設置位置が，それぞれ別の遠隔場所の為，配線図は同じ平面図に描き表すことができない。従って，別図を作成して，互いの図面に行先場所名及び回路名などを明記するよ うにする。
（3）制御盤結線図の作図
一般事務所ピルの動力設備では，電動機の台数や制御方式の種類が多く，通常，配線図面に制御盤結線図を記入できない。従って，盤外観図，結線図，シーケンス図をまとめた制御盤結線図表を作成する。大型の建物では，更 に監視盤図面を作成する必要がある場合がある。
（4）その他
部屋名，凡例などは，電灯配線図に準じて記入する。
9．5．6受変電設備配線図
受変電設備とは，一般に構外から伝送された電気を構内に敷設した変圧器などで変成し，更に変成した電気を構内•外へ配電する（一般事務所ピル，工場では構内のみに配電する）電気設備をいい，引込受電関連の機器や盤，変成する機器，配電する盤などの配置をして，それらの間の配線を記入したものを結線図も含めて，受変電設備の配線図という。一般には受変電設備図といわれ，次のような内容に分類される。
①受変電設備結線図（単線結線図，又は複線結線図）
（2）引込管路関係図
（3）機器配置図（平面図，正面図，断面図，ピット図，ケ一ブル配線図）
（4）配電盤図（高圧配電盤外観図，低圧配電盤外観図，結線図）
（5）フレームパイプ組立図
受変電設備の設置場所は，一般にはピル建物の地下階に設置されることが多く，機器設置にいろいろな制約があ るので，設置する部屋の建築構造，使用材料，仕上げなどを十分調べた上で図面を作成する必要がある。又，最近 の小型ビル受変電設備は，屋外型キューピクルをビル屋上に設置する場合もある。その場合は，建物屋上平面図と屋内への連絡用配線の為の建築関係図面が必要となる。主要機器の搬出入口の位置，大きさ，通路なども確認す る必要がある。
一般事務所ピルにおける受変電設備配線図の作成手順は，概ね以下のようになる。
（a）受変電設備結線図の作成
受変電設備結線図は，一般に単線結線図又は複線結線図といわれ，受変電設備の基本となるものである。
単線結線図は，受変電設備の基本的な系統及び設備の概略を示したもので，三相も単相も1本の線で描き表し，
複数の機器設置に対して，単に数字を添字して，できるかぎり簡略に表現したものである。
複線結線図は，三相の場合，三相結線図とも呼ばれ，単線結線図による概略表示を各相ごとに描き表したもので，各相に接続される機器は，全てJIS電気用図記号及びJEM電気機器略号•制御機器番号に従って描き込う必要があ る。
受変電設備結線図を作図する上で重要なことは，単線結線図，複線結線図のいずれも母線部分は太く，はっきりと描き込み，機器についてはJISC 0617：2011「電気用図記号」によることである。内容については，通常，高圧受電経路から始め，責任分界点，財産分界点を明確に記入し，遮断器，変圧器を経由して低圧配電盤まで描く。母線につ いては，その使用材料，サイズ，本数（条数）を必ず記入する。
低圧配電盤は，遮断器の容量，負荷設備容量，二次側電線寸法，回路番号まで記入するのが望ましいが，これら の結線図を1枚の図面に描き切れない場合は，低圧配電盤関係を別図としても良い。但し，それ以外は1枚の図面に まとめる方が良い。
又，接地線は，単線結線図で描く必要はないが，複線結線図では，A種，B種，C種，及びD種接地工事の各接地線 の接続を正確に記入する必要がある。
（b）機器配置図の作成
機器配置図は，予め設定した配置に機器外形図を記入した図である。建築図縮尺寸法と同じ縮尺の機器の外形図を記入する必要があるが，外形図は詳細図の必要はなく，一番外側の寸法で記入して支障ない。機器配置図は機器の組立て，及び積算上必要なものなので，平面図は全体を描き表す必要がある。又，断面図は，主要部分の床上高さと納まりについて描くようにする。従つて，2～3箇所，断面図を描き表す必要があり，通常，主要面から時計回りの順に描き表す。
尚，機器間の配線は，床ピット又は天井ラックによるケ一ブル配線，若しくは，碍子による銅帯，銅棒配線となる。こ れらも必ず記入する。
（c）配電盤図の作成
配電盤は，扱う電圧で高圧配電盤，低圧配電盤とに分けられ，更にキューピクル式自立型及び開放式自立型に分類される。又，大きな受変電設備では，監視制御盤（ベンチ型，デスク型）があり，それらの図面も作成する必要があ る。
配電盤図は，通常，配電盤の正面図と側面図，及び結線図とからなり，特に必要な場合は，裏面図，複線接続図を描くことがある。
配電盤の図面は，主に製造業者が製作図として作成する場合が多い。尚，図面には基礎ベースを必ず記入する。
（d）フレームパイプ組立図
開放式受変電設備では，フレームパイプ組立図が必要となる。設計図には必要ないが，施工の際には必ず作成 する必要がある図面である。従って，キューピクル式自立型配電盤（高，低圧とも）で構成される受変電設備には必要がない図面である。太い単線を用いて見透し図で描き表し，各間隔の寸法を正確に記入する。
（e）引込管路関係図
受電用引込管路は，供給事業者と協議の上，受変電室までの経路を作図するものである。使用する建築図は，建築の構造を特に詳細に調べて描く必要がある。
管路図で重要なことは，外構からの引込管路なので，建物の防水を考慮に入れ，その平面図，断面図，詳細図を作成する必要があることである。
尚，引出し管路についても同様である。

9.6 プリント配線図

電子機器を小型化するには，回路を構成する電子部品 を小型化すると共に短く合理化して配線し，高密度に集積化する必要がある。この為に考えられた方法がプリント配線で，多数の電子部品を接続する配線パターンをした導体が付いた絶縁板上に，それらの電子部品を搭載して電子回路を構成する方法である。
プリント配線を用いることで，電子機器は保守点検が容易になり，信頼性も向上する。しかし，配線を平面上に高密度で実現する為，電磁誘導や静電誘導によるクロスト一ク，伝送信号の反射などでの誤動作など，従来の回路製作では問題にならなかったことが課題となる。従って， プリント配線回路設計を行うには，電子回路に関する知識だけではなく，伝送線路などの高度な知識や技術，更 に経験が必要となる。プリント配線に関する実装技術は，年々高度化していることもあり，ここでは紹介にとどめる。尚，JIS規格では，主な銅張積層板に関して規格化され ているが，最近の技術に十分追随しているとは言えない ので，むしろ，JPCA（日本電子回路工業会）の規格を参照した方が良い。
9．6．1 プリント配線板
プリント配線板を柔軟性で分類すると，以下の3つにな り，リジット板とフレキシブル板は，層構造で，片面配線板，両面配線板，多層配線板に区分される（図9．32）。
（1）リジット板
柔軟性が全くない絶縁材を用いたもの
（2）フレキシブル板
薄膜状の絶縁体フィルムに導体箔や導電性ペーストなど で，導体層を形成したもの。ポリイミド，ポリエステルなどの フィルムが用いられる。
（3）フレックス・リジット板
リジット板に，三次元的組込みや繰り返し屈曲を行う為の曲げる部位を設けるために，その部位にフレキシブル板を使用したもの。通常，両面又は片面のフレキシブル板の両側にリジット板を貼り付け，スル一ホールでフレキシブル層 とリジッド層の電気的導通が取られる。
プリント配線板を層構造で分類すると，以下のように区分され る（説明は，リジット板に対してのみ）。
（1）片面板（1層板）：
配線パターンが配線板の片面のみにあるもの（図9．30（a））。 もつともシンプルな配線板で，複雑な回路は作れないが，コ ストを安く抑えられる。
（2）両面板（2層板）：
配線パターンが配線板の両面にあるもの（図9．30（b），（c））。両面に回路を作れるが，これを電気的接続する必要 がある。電気的接続する方法は，貫通する穴にめっき（めっきスルーホール（図9．30（c））して表と裏の導体パターン を一体化させる方法と，単純に電子部品のリ一ド線を利用して，表と裏のランドでハンダ付けする方法がある。
（3）多層板：
高密度実装するには両面では配線できない為，配線板の内側にも導体パターンがあるものである（図9．30（d））。導体パターンが付いた接着シ—ト（プリプレグ）を必要な枚数重ねて作る逐次積層法，コアとなる配線板の上に絶縁

層を作り，その表面に導体パターンを作ると共に，下の層と電気的接続することを繰り返して作るビルトアップ法，そ の中間，すなわち，各導体層を電気的接続するビアがある導体パターンが付いた接着シ一ト（プリプレグ）を必要な枚数重ねて作るIVH（Interstitial Via Hole）法がある。逐次積層法では，他の層との電気的接続は，すべての層を貫通す るスル一ホールにめつきすることで行う（図9．31の左の2つの穴）。ビルトアップ法では，ビアと呼ばれる小さなをレ—ザ一加工などで開け，その穴にめつきして行う方法（図9．31の右の2つの穴）と，コアにハンダバンプを付けた後に絶縁層 を作り，絶縁層を突き抜けたハンダバンプと作成する導体パターンとを接続する方法がある。
更に多層基板には，層数により，いくつかの種類がある。4層基板の場合，内側の2層に電源層とグラウンド層を設 け，基板表面の両面を配線層とすることが多い。
プリント配線板を基板材料で分類すると，以下のようになる。
（1）紙
紙基材にフェノ一ル樹脂，エポキシ樹脂，又はポリイミド樹脂を含浸したもの。
（2）ガラス布
ガラス繊維の布にエポキシ樹脂やポリイミド樹脂などを含侵させたもの。
（3）コンポジット
紙基材にエポキシ樹脂を含侵させたものの表面に強度補強でガラス布エポキシ樹脂のプリプレグを用いたガラ ス布•紙複合基材樹脂，ガラス不織布をガラス布で補強した複合基材にエポキシ樹脂を含侵させたガラス布・ガラ ス不織布複合基材樹脂，ガラス布エポキシ樹脂の表面にテフロン樹脂を付けたものなどがある。
（4）セラミック
アルミナ（酸化アルミニウム）に耐火性の高い金属（タングステンやモリブデン）で配線パターンを形成し，積層した ものを焼成して製造したもの。高周波特性や熱伝導率に優れる。
ガラスにセラミックを混合して $900^{\circ} \mathrm{C}$ 程度の低温で焼成し，配線用の金属として銀や銅を使用できるようにした低温同時焼成セラミックス（LTCC）基板もある。
（5）テフロン
ガラス布基材にフッ素樹脂（PTFE・テフロン）を含侵したもの。高周波特性に優れる。
（6）金属ベース
放熱性を高めることを目的として，金属（アルミ又は銅）の上に絶縁層，更にその上に銅箔を重ねたもの。
表9．13プリント配線板の基材，樹脂及び特性（JIS C 6480：1997）

銅張積層板の種類	基材と樹脂の記号	特性の記号		基材と樹脂	特性	参考 （関連規格）	NEMA
FCL （プリント 配線板用銅張積層板）	PP	7，7F	一般的電気抵抗性	紙基材フェノール樹脂	絶縁抵抗 $10^{9} \Omega$ 以上	JIS C 6485	XPC，FR－1
		5，5F			絶縁抵抗 $10^{10} \Omega$ 以上		
		3，3F	高電気抵抗性		絶縁抵抗 $10^{11} \Omega$ 以上		XXXPC，FR－2
	PE	1F		紙基材エポキシ樹脂	絶縁抵抗 $10^{11} \Omega$ 以上	JIS C 6482	FR－3
	SE	1，1F		合成繊維布基材エポキシ樹脂	絶縁抵抗 $5 \times 10^{11} \Omega$ 以上	JIS C 6483	
	CPE	1F		ガラス布•紙複合基材エポキシ樹脂	絶緑抵抗 $10^{11} \Omega$ 以上	JIS C 6488	CEM－1
	CGE	3F		ガラス布・ガラス不織布複合基材エ ポキシ樹脂	絶縁抵抗 $5 \times 10^{11} \Omega$ 以上	JIS C 6489	CEM－3
	GE	4，4F	一般的耐熱性	材エポキ	絶縁抵抗 $5 \times 10^{11} \Omega$ 以上	JIS C 6484	G10，FR－4
		2，2F	高耐熱性		同上及び耐熱性		G11，FR－5
	GI	1，1F	未変性	ガラス布基材ポリイミド樹脂	絶緑抵抗 $5 \times 10^{11} \Omega$ 以上で未変性のもの	JIS C 6490	
		2，2F	変性		同上で変性したもの		
	GT	1，1F		ガラス布基材ビスマレイミドノトリア	絶縁抵抗 $5 \times 10^{11} \Omega$ 以上で充填剤を含まないもの	JIS C 6492	
		2，2F			同上で充てん剤を含むもの		
	GE	4，4F		ガラス布基材エポキシ樹脂	絶縁抵抗 $5 \times 10^{11} \Omega$ 以上	JIS C 6486	
TCL	GI	1，1F		布基材ポリイミド樹脂	絶縁抵抗 $5 \times 10^{11} \Omega$ 以上で未変性のもの	JIS C 6493	
ント配線		2，2F			同上で変性したもの		
板用銅張積層板）	GT	1，1F		ガラス布基材ビスマレイミドノトリア	絶緑抵抗 $5 \times 10^{11} \Omega$ 以上で充填剤を含まないもの	JIS C 6494	
		2，2F			同上で充填剤を含むもの		

表9．13にプリント配線板用銅張積層板通則（JIS C 6480）に揭載されている基材，樹脂及び特性の表をNEMA（アメリ力電機工業会）（ANSI）の規格番号と共に示す。
プリント配線板用銅張積層板通則（JIS C 6480）では，形名を以下の配列で構成することになっている

銅張り積層板の種類を表す記号	－	基材と樹脂を表す記号	特性を表す記号	銅箔の厚さ及び構成を表す記号	大きさ を表す記号	厚さを 表す 記号	－	厚さの許容値を表 す記号	外観を表す記号	耐燃性 を表す記号

銅張り積層板の種類を表す記号は，表9．13の左の欄の記号で，ECLかTCLになる。基材と樹脂を表す記号は左か ら2番目の欄の記号，特性を表す記号は左から2番目の欄の記号である。特性を表す記号にFが付くものは，基材が難燃性であることを意味する。銅箔の厚さは，18（0．018mm），35（0．035mm），70（0．070mm）を斜線＂／＂の前後に入れ て表す。片面銅張積層板では斜線の後の数字を＂0＂にし，両面銅張積層板で厚さの構成が違うときは，厚い方の記号を斜線の前に表す。 9．6．2 プリント配線パターン
プリント配線板通則（JIS C 5010：1994）では，プ リント配線パターンなどについて規定している。
プリント配線パターンは，メートル系の基本格子の使用を標準とし，インチ系の基本格子の使用は従来品との整合が必要なときのみに限るこ とになっている。
メートル系の基本格子は 2.5 mm 単位で，必要 に応じて 0.5 mm （更に細かい単位が必要なときは 0.05 mm ）単位の補助格子を使用して，配線パタ ーンを描く。部品類を接続する穴などは，格子上の交点に配置するようにする。
導体幅は，使用電流値，周囲温度，製造技術 などを勘案し，電流による温度上昇が一定限度 を超えない為に必要となる幅にする。
導体間隙は，印加電圧，湿気，温度，埃などで導体間が絶縁破壊されないようにする為，ある

表9．14プリント配線板の主要部寸法（JIS C 5010：1994）

外形寸法	$\begin{array}{ll} \text { パネ ル } \\ \text { 寸 法 } \end{array}$	銅張積層板の大きさ $(1000 \times 1000, ~ 1000 \times 1200) ~$ および分割数 $(4,6,8$ ， 9，12）に従って，バネル寸法内に配列できる寸法とする。
	厚 さ	$\begin{aligned} & 0.1,0.2,0.3,0.4,0.5,0.6,0.8,1.0,1.2,1.6,2.0,2.4,2.8 \text {, } \\ & 3.2 \end{aligned}$
格子寸法	基本格子	ブリント配線板に互いに直角の格子上に穴を配列する場合の格子間隔は 2.5 または 2.54 とする。
	補助格子	メートル系 $0.5,0.05$ インチ系 0.635 mm
穴寸法	丸穴寸法	$0.5,0.6,0.8,1.0,1.3,1.6,2.0$
	角穴寸法	綝横比 1：2の角穴では， $0,8 \times 1,6,1,0 \times 2,0,1,25 \times 2,5$䌝横比 $1: 3$ の角穴では， $0.8 \times 2.5,1.0 \times 2.5,1.0 \times 3.15$纋横比 $1: 4$ の角穴では， $0.8 \times 3,15,1.0 \times 4,0,1.25 \times 5.0$
	穴の位置	穴の中心は，格子交点にあることを原則とする。
	穴の板端 との距離	その最小距離は，その配線板の板荲以上とする。
ラン ド	標準ラン ド径	ランドとは，部品端子または㨍体層相互間を接続するために穴の周囲に設 けた特定の導体部分をいう。標準ランド永は，原則として次による。 $0.8,1.0,1.3,1.5,1.8,2.0,2.5,3.0,3.5$

注：寸法には寸法許容差か定められている。

程度の間隙をとる。電食などで信頼性を損うこともあるので，この点を踏まえた対応が必要である。
部品は互いに重なったり，他の部品に隠れたりすることがないように，できる限り同一方向に配列する。また，高さ を揃えるようにすると共に，できる限り低く取り付ける。
重量のある部品は荷重がかかるので，プリント配線板の支持部近くに配置するなどの配慮が必要である。
9．6．3 プリント配線パターンの作成
プリント配線パターンは，導電ペーストで配線パターンを印刷して焼成するなどの方法もあるが，ここでは，一般的 なフォトレジストによる方法を紹介する。
フォトレジストによる方法は二つある。一つはエッチング法，もう一つはめっき法である。いずれにせよ，導体のパタ ーン形成法以外の手順は同じである。
（1）部品の配置を示すレイアウト図を作成する。
（2）レイアウト図を基にして配線用パターン原図を作る。つまり，接続図に従って部品間を結ぶ線を決める。線に流 る電流と銅箔の厚さを考慮して，銅箔の幅を，配線間に加わる電圧を考慮して銅箔の間隔を決める。配線の曲が りやランドの大きさなどは，ハンダののり具合に影響するので，それを考慮して決める。
（3）フォトレジスト法，スクリーン印刷レジスト法，オフセット印刷レジスト法などで，エッチング法では銅張プリント配線板に，めつき法ではプリント配線板基材に，配線用パターン原図を転写する。
転写後，エッチング法では，不要な銅箔を除去する部分にレジストがなく，銅箔が残る部分にレジストがある。一方，めっき法では，銅箔を張り付ける部分にレジストがあり，張り付けない部分にレジストがある。
④ エッチング法では，銅箔のエッチングを，めつき法では，銅のめっきを行い，配線パターンを形成する。形成後， レジストを除去する。
（5）穴あけ加エ，化学的•機械的表面処理などを行う。
〈参考〉色又は数字による導線の識別（JIS C 0446（IEC60446））
導線の識別については，本書の範疇ではないので，概略説明のみとする。
IEC 60757で，色コ一ドが表9．15のように定められている。導線の識別を色で識別する場合は，このコ一ドを使用す ることになる。一方，JIS C 0446では，導線の識別に使用できる色が規定されている。
各電線の色として，電力会社や諸官庁では，表16及び表17のように使われ ているようである。但し，電力会社では，事業所で違う場合，及び，RSTの代わ りに $O(R) \square(S) \Delta(T)$ やABCが使われて

表9．15 プリント配線板の主要部寸法（JIS C 5010：1994）

黒（Black）	BK	黄（Yellow）	YE	灰（Grey）	GY	青緑（Turquoise）	TQ
茶（Brawn）	BN	緑（Green）	GN	白（White）	WH	銀（Silver）	SR
赤（Red）	RD	青（Blue）	BU	桃（Pink）	PK	緑黄（Green－and－Yellow）	GNYE
橙（Orange）	OG	紫（Violet）	VT	金（Gold）	GD		

表9．16 電力会社の高圧配線色別 ［電気工事技術情報（2003年）より］

電力会社	R相	S相	T相
北海道電力	赤	白	青
東北電力	赤	白	黒
東京電力	黒	赤	白
北陸電力	赤	黄	青
中部電力	赤	白	音
関西電力	赤	青	白
中国電力	赤	白	青
四国電力	赤	白	青
㖄電力	赤	白	青
沖縄電力	赤	白	青

注．事業所で異なる場合あり。他に，
（R）\square（ S ）\triangle（ T ）又はABC（RST）で
の表記も使用されている。
いるところもあるようだ。
当然，国によっても異なる。IEC60446 には，三相の $L_{1}, ~ L_{2}, ~ L_{3}$ の望ましい色は，茶，黒，灰色，単相は茶，保護導体は，緑／黄の組合せ色で，いずれかの色が長さ 15 mm 当り $30 ~ 70 \%$ 占めること， PEN導体は，全長に亘って緑／黄の組合せ色にして両端にライトブル一で印をつけるか，全長に亘ってライトブル一にして両端に緑／黄で印をつけるとな っている。このように，使用する場所で違うので，設計や施工は十分確認してから行う必要がある。

JIS C 0446の主な規定を以下に列挙する。
［1］色による識別
①電線の識別に，黒，茶，赤，黄，オレンジ，緑，青（ライトブル一も含む），紫，灰色，白，ピンク，青緑を，標準として使用 する。
誤使用防止の為，単色の黄及び緑は，緑／黄の組合せと混同する恐れがあるところでは使用してはいけない。緑／黄の組合せ色及び緑を使用する保護接地線以外の電線には，ライトブルー，黒，茶の3色が望ましい。
色による識別は，絶縁材の色，色マ—力などで電線の全長に亘って行うことが望ましい。
② ライトブル—及び白（又は薄い灰色）は中性線用又は中間線用として使用する。
中性線又は中間線が使われていない場所では，多芯ケ一ブル内のライトブル一の電線を保護接地線以外の他 の目的に使用できる。
中性線又は中間線に使用される裸線は，各隔室，構成単位又は引入れ可能な各位置で15～100mm幅のライトブ ルーの縞で色付けするか，全長に亘ってライトブル一の色付けをする。
③ 混同する恐れがなければ，各色の組合せを識別に使用して良い。
④緑／黄の組合せ色及び緑は保護接地線の識別に使用するもので，その他の目的に使用してはいけない。緑／黄は保護接地線の識別用として認められている唯一の色の組合せである。
保護接地線に使用される裸線は，15～100mm幅の緑／黄の縞又は緑で，各導線の全長に亘って，又は各隔室， ユニット若しくは各引込み部で色付けする必要がある。粘着テ—プを使用する場合は，2色テ一プだけを使用する。
保護接地線として使用される絶縁電線の色は，緑／黄の組合せ電線上の長さ15mm当り，いずれかの色が導線の表面の 30 ～ 70% を占め，他の色が残りを占めるように色付けする。
［2］番号付け方式
①緑／黄で識別される電線を含まない一群の電線の中の各電線の識別に，番号付け方式を適用する。この識別方式は，はつきりと区別できるものであり，かつ，耐久性がある必要がある。
識別はアラビア数字で行い，すべての数字は読み易く，絶縁の色に対して強いコントラストを示す必要がある。
（2）多芯ケ一ブル内の電線は，すべて順番に番号付けをする。
番号は電線の全長に亘って，一定の間隔＂d＂毎に繰返し表示し，連続する番号の表示は，互いに逆向きとする。番号の配置は，縦向き（軸方向），又は横向きのいずれかによる。
番号の位置と間隔＂d＂は，関連の製品規格に明記する。
混乱を避ける為，数字の6と9又は6と9を含む数字の組合せにはすべて下線を施す。

[^0]: 1.4 増設 同一図面で増設•既設を表す場合には，増設は太線，既設は細線又は点線とする。

 なお，増設，既設は色別してもよい。
 1.5 撤去 撒去の場合は，×を付ける。

