表7．2 JEM 1090：2008制御器具番号（抜粋）

機器の機械的翼常を監視又は検出する器具
界磁亜失を検出する継䉓器
機雑に励磁を与え入はこれを除く器具
機械をその運転回路に接続するる器具
自動から手動に移すなとのように制御回路を
短絡又は地絡故陴点までの距雄によって動作
する継電器
直流の過電圧で動作する䋛奄器

予定の時間以内に所定の動作が行われないと
き動作する継電器
回転機の温度が予定值以上若しくは以下と

交流の過䉓流又は地絡過軍流で動作する維嵬器
励磁又は励脜の予定状嶣で動作する絉電器

予定のすべりで動作する検出器又は同期外れ
を検出する継電器

交流の適電圧で動作する緤電器
二回路の電圧差をある範囲に保つ調整器又は
予定電圧差で動作する䋛電器
二回路の電流差をある簿囲に保つ調整器又は
停止若しくは開路前の時刻設定を行う継電器
又は停止若しくは開路前に時間の余裕を与え
予定の圧力で動作する器具

器 具 名 称
不足電流継電器
制御回路切換スイッチ，接触器又は継電器

短絡選択䋛電器又は地絡選択紝地器
交流過電流継電器又は地絡過電流継電器
交流遮断器又は接触器
励磁䋛電器又は励弧䋛電器
高速度䢡断器
（躃

60	自動電圧平䚘調整器又は奄圧平衡継奄器

61 自動電流平衡調整器又は電流平衡継電器

圧カスイッチ又は継電器

F
\leftrightarrow
ํํ
© 65 調速装置

基本器具番号	器具名称	説 明
1	主幹制御器又はスイッチ	主要機器の始動•停止を開始する器具
2	始動若しくは閉路限時継電器又は始動若しくは閉路遅延継電器	始動若しくは閉路開始前の時刻設定を行う継電器又は始動若しくは閉路開始前に時間の余裕を与える継雨器
3	操作スイッチ	機器を操作するスイッチ
4	主制御回路用制御器又は継電器	主制御回路の開閉を行う器具
5	停止スイッチ又は継電器	機器を停止する器具
6	始動遥断器，スイッチ，接触器又は継電器	機械をその始動回路に接続する器具
7	調整スイッチ	機器を詷整するスイッチ
8	制御電源スイッチ	制御電源を開閉するスイッチ
9	界磁転極スイッチ，接触器又は継電器	界磁電流の方向を反対にする器具
10	順序スイッチ又はブログムム制御器	機器の始動又は停止の順序を定める器具
11	試験スイッチ又は継電器	機器の動作を試験する器具
12	過速度スイッチ又は継電器	過速度で動作する器具
13	同期速度スイッチ又は継電器	同期速度又は同期速度付近で動作する器具
14	低速度スイッチ又は継電器	低速度で動作する器具
15	速度調整装埴	回転機の速度を調整する装置
16	表示線監視䋛電器	表示線の故障を検出する継電器
17	表示線継電器	表示線継電方式に用いることを目的とする繗電器
18	加速若しくは蔵速接触器又は 加速若しくは減速継電器	加速又は減速が予定値になったとき，次の段階に進める器具
19	始動－運転切換接触器又は継電器	機器を始動から運転に切り換える器具
20	補機弁	補機の主要升
21	主機弁	主機の主要弁
22	漏電遮断器，接触器又は継電器	漏電が生じたとき，動作又は交流回路を遮断 する器具
23	温度䦓整装㨁又は継電器	温度を一定の範囲に保つ器具
24	タッブ切換装置	電気機器のタップを切り換える装置
25	同期検出装瞋	交流回路の同期を検出する装置
26	静止器温度スイッチ又は䋛電器	変圧器，整流器などの温度が予定値以上又は以下になったとき動作する器具
27	交流不足電圧継電器	交流電圧が不足したとき動作する継電器
28	警報装置	警報を出すとき動作する装置
29	消火装置	消火を目的として動作する装置
30	機器の状龍又は故障表示装置	機器の動作状態又は故障を表示する装置
31	界磁変更继断器，スイッチ，接触器又は絉電器	界磁回路及び励磁の大きさを変更する器具
32	直流逆流継電器	直流が逆に流れたとき動作する継電器
33	位置検出スイッチ又は装置	位置と関連して開閉する器具
34	電動順序制御器	始動又は停止動作中主要装置の動作順序を定 める制御器
35	ブラシ操作装置又はスリッブリンク短絡装㯰	ブラシを界降若しくは移動する装置又はス リッブリングを短絡する装置

表7．2 JEM 1090：2008 制御器具番号（抜粋）（つづき）

基本器具番号	器具名称	説 明
66	断続継電器	予定の周期で接点を反復開閉する䋛電器
67	交流電力方向継電器又は地絡方向䋛電器	交流回路の電力方向又は地絡方向によって動作する継電器
68	混入検出器	流体の中にほかの物質が混入したことを検出 する器具
69	流量スイッチ又は継電器	流体の流れによって動作する器具
70	加澸抵抗器	加減する抵抗器
71	整流素子故障検出装䓢	整流素子の故障を検出する装置
72	直流遮断器又は接触器	直流回路を继断•開閉する器具
73	短絡用遮断器又は接触器	電流制限抵抗，振動防止抵抗などを短絡する器具
74	調整弁	流体の流量を調整する弁
75	制動装置	機械を制動する装置
76	直流過電流䋛電器	直流の過電流で動作する継電器
77	負荷誠整装置	負荷を棡整する装直
78	挽送保護位相比較継電器	被保護区間各端子の電流の位相差を搬送波に よって比較する継電器
79	交流再閉路継電器	交流回路の再閉路を制御する継電器
80	直流不足電圧継電器	直流電圧が不足したとき動作する継電器
81	調速機駆動装置	調速機を駆動する装書
82	直流再閉路䋛電器	直流回路の再閉路を制御する継電器
83	選択スイッチ，接触器又は継電器	ある電源を選択又はある装置の状態を選択す る器具
84	電圧䋛電器	直流又は交流回路の予定電圧で動作する継電器
85	信号継電器	送信又は受信継電器
86	ロックアウト継電器	異常が起こったとき装置の応動を阻止する継電器
87	差動継電器	短絡又は地絡差電流によって動作する継電器
88	補機用遮断器，スイッチ，接触器又は継電器	補機の運転用遮断器，スイッチ，接触器又は継電器
89	断路器又は負荷開閉器	直流若しくは交流回路用断路器又は負荷開閣器
90	自動電圧調整器又は自動電圧調整䋛電器	電圧をある範囲に調整する器具
91	自動電力棡整器又は電力継䉓器	電力をある笵囲に調整する器具又は予定電力 で動作する継電器
92	扉又はダンパ	出入口扉，風洞啡など
93	（予備番号）	－
94	引外し自由接触器又は継電器	閉路操作中でも引外し装畳の動作は自由にで きる器具
95	自動周波数調整器又は周波数継電器	周波数をある範囲に調整する器具又は予定周波数で動作する継電器
96	静止器内部故障検出装置	静止器の内部故障を検出する装置
97	ランナ	カプラン水車のランナなど
98	連結装置	二つの装置を連結し動力を伝達する装置
99	自動記録装置	自動オシロクラフ，自動動作記録装抯，自動故障記録装置，故障点標定器など

表7．2 JEM 1090：2008 制御器具番号（抜粋）（つづき）

補助記号	内 容	外 国 語
F	ヒューズ	Fuse
	周波数	Frequency
	ファン	Fan
	フィーダ	Feeder
	フリッカ	Flasher，Flashing
	正	Forward
FL	フィルタ	Filter
G	グリス	Grease
	地絡（グランド）	Ground fault
	ガス	Gas
	発電機	Generator
H	高	High
	所内	House，Station service
	ヒータ	Heater
	保持	Hold
I	内部	Internal
	初期	Initial
IL	インタロック	Interlock，Interlocking
IR	誘導電圧調整器	Induction voltage regulator
INV	DC／AC 変換器，可変電圧 可変周波数電力変換器（インバータ）	DC／AC Inverter
J	結合	Joint
	ジェット	Jet
K	三次	Tertiary
	ケーシング	Casing
L	ランブ	Lamp，Light
	漏れ	Leakage，Leak
	下げ，減	Lower，Decrease
	ロックアウト	Lock－out，Lock
	低	Low
	線路	Line
	負荷	Load
	左	Left
LA	避雷器	Lightning arrester
LD	進み	Leading
LG	遅れ	Lagging
LR	負荷時電圧調整器	On－load voltage regulator
M	計器	Meter
	主	Master，Main
	モー素子	Mho element
	動力	Motive power，Motive force
	電動機	Motor
	手動	Manual
N	窒素	Nitrogen

表7．3 JEM 1115：2010 配電盤•制御盤•制御装置の用語及び文字記号（抜粋）

用 語	文字記号	外国話（参考）	用語の意味（参考）
電 流 計	AM	Ammeter	－
最大需要電流計	MDAM	Maximum－demand ammeter	－
電 圧 計	VM	Voltmeter	－
零相電圧計	VOM	Zero－phase voltmeter	－
零相電流計	AOM	Zero－phase ammeter	－
電 力 計	WM	Wattmeter	－
最大需要䉓力計	MDWM	Maximum－demand wattmeter	－
電力量 計	WHM	Watt－hour meter	－
無効電力計	VARM	Varmeter	－
無効電力量計	VARHM	Var－hour meter	－
力 率 計	PFM	Power－factor meter	－
周 波 数 計	FM	Frequency meter	－
同 期検定器	SY	Synchronoscope， Synchronism indicator	－
水 位 計	WLI	Water level indicator， Water level meter	水位を测る計器。水槽に取り付けて直接水面 の高さを測る目盛を＂量水標（りょうすいひょ う）＂と呼ぶことがある。
位瞋指示計	PI	Position indicator	－
回 転 計	NM	Tachometer	回転体の回転速度を測定する装置。
温 度 計	THM	Thermometer	－
流 量 計	FLM	Flow meter	瞬時流量，積算流量のいずれか，又は両方を指示する流量測定装獚。
油 而 計	OLI	Oil level indicator， Oil level meter， Oil gauge	－
圧 力 計	PG	Pressure gauge	－
検電器検圧計	VD	Voltage detector	－
分 流 器	SH	Shunt	電流に比例した電圧降下を得るため，電流回路に抑入される抵抗器。電流計では測定範囲 の拡大に用いられる。
分 圧 器	VD	Voltage divider	ある電圧から，周知の比で分割した電圧を得 る装偪。高電圧を测定する場合には，抵抗分圧器及び容量分圧器がある。
倍 率 器	MLT	Multiplier	－
熱 電 対	THC	Thermocouple	熱起電力を発生させる目的で， 2 㮔類の導体 の一端を電気的に接続したもの。
測温抵抗体	RTD	Resistance temperature detector	抵抗素子，内部導線，保護管，端子などから なる測温体。
サーチコイル	SC	Search coil，Exploring coil	－

表7．2 JEM 1090：2008制御器具番号（抜粋）（つづき）

補助記号	内	容	外 国 語
S	二次		Secondary
	速度		Speed
	副		Sub
	送信		Sending
	固定子		Stator
	単独		Single
	選択		Selective
	すべり		Slip
	シール		Seal
	予備（スペア）		Spare
	始動		Starting
SH	スペースヒータ		Space heater
SU	始動素子		Starting unit
T	変圧器		Transformer
	温度		Temperature
	限時		Time limit
	荤延		Time－delay（lag）
	引外し		Tripping，Trip Release
	タービン		Turbine
	連結		Tie
	トルク		Torque
U	使用		Use
UPS	無停電電源装置		Uninterruptible power systems
V	電圧		Voltage
	真空		Vacuum
	弁		Valve
VIB	振動		Vibration
W	水		Water
	水位		Water level
	水流		Water flow
	水圧		Water pressure
	給水		Water feeding
	排水		Water drain
WC	泠却水		Cooling water
	冷却水ボンブ		Cooling water pump
Z	フサザー		Buzzer
	インビーダンス		Impedance
$\begin{array}{lll} \hline \mathrm{A}, \mathrm{~B}, \mathrm{C} \\ \mathrm{X}, \mathrm{Y}, \mathrm{Z} \end{array}$	補助（識別用）		－
ϕ	相		Phase

表7．3 JEM 1115：2010配電盤•制御盤•制御装置の用語及び文字記号（抜粋）（つづき）

語	文字記号	外国語（参考）	用語の意昧（参考）

（3）装置用語			
用 語	文字記号	外国語（参考）	用語の意味（参考）
配 電 艦	－	Switchgear， Switchboard	開閉機器と操作•測定•保護•監視•調整の機器とを組み合わせ，更に，内部配線，附属物及び支持構造物を備え，一般に，発電•送電•変電•配電•電力変換のシステムを運転 する装置の総称。
制 御 艦	－	Controlgear， Controlboard	開閉機器と操作•測定•保護•監視•調整の機器とを組み合わせ，更に，内部配線，附属物及び支持構造物を備え，一般に，電力消費 のシステムを運転する装置の総称。
$\begin{aligned} & \text { ロードセンタ } \\ & \text { (パワーセンタ) } \end{aligned}$	$\begin{aligned} & \mathrm{LC} \\ & (\mathrm{PC}) \end{aligned}$	Load center． （Power center）	主回路機器，監視•制御機器などを1面ごと に開皟した外箱に集合的に収納することに よって，主としてコントロールセンタ，分電艦などに電力を供給することを目的とした装置。
分 電 盤	－	Distribution boards， Distribution center	分䐜過電流保護器を集合して取り付けたも の。分岐開閉器，主開閉器などを併置したも の及び取引用計器，電流制限器の設置場所を設けたものを含む。
ガス 絶 縁開 閉 装 置	GIS	Gas insulated switchgear	絶縁性能と消弧性能をもったガスを利用し，母線，断路器，遮断器，接地装置などを組み合わせ，一体構成とした縮小形開閉装置。

用 語	文字記号	外国語（参考）	用語の意味（参考）
継 電 器	$\begin{aligned} & \mathrm{R} \\ & \text { (RY) } \end{aligned}$	Relay	あらかじめ規定した電気量又は物理量に応動 して，電気回路を制御する機能をもつ機器。
$\begin{array}{lll} \text { ブロテク } \\ \text { 継 } & \text { 電 } \\ \text { 䉓器 } \end{array}$	PROR	Protector relay	ネットワークプロテクタの 1 構成品で，逆電力继断特性などの保護機能と，差電圧投入特性及び無電圧投入特性の制御機能とを合わせ もつ継電器。
電圧継電器	VR	Voltage relay	設定した電圧で動作する継電器。
電流繗電器	CR	Current relay	設定した電流で動作する継電器。
電力継電器	PR	Power relay	設定した電力で動作する継電器。
逆電力継電器	RPR	Reverse power relay	交流電力が常時と反対の方向に流れた場合に動作する継電器。
周波数継電器	FR	Frequency relay	設定した周波数で動作する継電器。
速度 継 電 器	SPR	Speed relay	設定した速度で動作する継電器。
温度継電器	TR	Temperature relay	設定した温度で動作する継電器。
圧力継電器	PRR	Pressure relay	設定した圧力で動作する継電器。
流量継電器	FLR	Flow relay	設定した流量で動作する継電器。
水位䋛電器	WLR	Water level relay	設定した水位で動作する継電器。
位置 継 電 器	POR	Position relay	設定した位置で動作する継電器。
過口口継電器	O \square R	Over－$\square \square \square \square$ relay	$\square \square$ 部に示した量が設定値以上になった場合
＊過電流䋛電器	OCR	Overcurrent relay	に動作する継電器。
＊過速度継電器	OSR	Overspeed relay	
＊過電圧継電器	OVR	Overvoltage relay	
方向過電流継電器	DOCR	Directional－ overcurrent relay	規定の方向に設定値以上の電流が流れた場合 に動作する継電器。
不足口口継電器	U $\square \mathrm{R}$	Under－$\square \square \square \square$ relay	口 \square 部に示した量が設定値以下になった場合
不足電圧䋛電器	UVR	Undervoltage relay	に動作する継電器。
短 絡 継 電 器	SR	Short－circuit relay， Phase fault relay	短絡保護を行うことを目的とする継電器。
短絡方向継電器	DSR	Phase directional relay Short－circuit directional relay	短絡保護を行うことを目的とする方向継電器。
地 絡 継 電 器	GR	Ground relay． Earth－fault relay	地絡保澹を行うことを目的とする継電器。
地絡適電流継電器	OCGR	Ground overcurrent relay． Earth－fault overcurrent relay	－
地絡過電圧継電器	OVGR	Ground overvoltage relay， Earth－fault overvoltage relay	－
地絡方向継電器	DGR	Ground directional relay． Earth－fault directional relay	地絡保護を行うことを目的とする方向継電器。
欠相 継 電 器	OPR	Open－phase relay	欠相保詨を行うことを目的とする継電器。
$\begin{aligned} & \text { 過 負 荷• } \\ & \text { 欠相 継 電 器 } \\ & (2 \mathrm{E} \text { リ } \\ & \hline \end{aligned}$	2ER	Two element relay for overload and open－phase	過負荷•欠相の保護を行うことを目的とする継電器。
過負荷•欠相反相継電器 （3Eリレー）	3ER	Three element relay for overload，open－ phase and phase－ sequence reversal	過負荷•欠相•反相の保護を行うことを目的 とする継電器。

表7．3 JEM 1115：2010 配電盤•制御盤•制御装置の用語及び文字記号（抜粋）（つづき）

（4）制御機器用語				$\begin{gathered} \text { 用 } \\ \hline \text { ガス 語 } \\ \hline \text { 進 } \end{gathered}$	$\begin{array}{\|l\|} \text { 文字記号 } \\ \hline \text { GCB } \end{array}$	外国語（参考）Gas circuit－breaker	用語の意味（参考）電潞の開閉を六フッッ化硫黄 $\left(\mathrm{SF}_{6}\right)$ などの不活 性ガス中で行う遮断器。
用 語	文字記号	外国語（参考）					
ス イッ＂ 開 閉	S	Switch	電気回路の開閉又は接䅅の変更を行う機器。	$\begin{gathered} \text { ブロテク タ } \\ \text { 逘断 器 } \end{gathered}$	PROCB	Protector	ネットワークブロテクタの1構成品で，逆電力などの異虽に対し その保慣のために用い
ナイフスイッチ	KS	Knife switch	刃及び刃受けによって開開を行うスイッチ。				カなどの異帝に对し，その保護のために用い る適断器。
$\begin{aligned} & \text { カバー付き } \\ & \text { ナイフスイッチ } \end{aligned}$	CKS	Knife switch with cover	刃が出入する溝があるカパーで充䉓部を覆い，極間には㻪壁を設けて，カバーを開けること なく，開閉操作ができるスイッチ。	電磁接触器	MC	Electromagnetic contactor． Contactor	電磁石の動作によって，負荷電路を頻繁に開閉する接触器。
断 路 器	DS	Disconnecting switch． Disconnector	単に充電した電路を開閉するために用いるも ので，負荷電流の開開性能を有さない機器。	電磁開閉器	MS	Electromagnetic switch， Electromagnetic starter	過電流継電器を備えた電磁接触器の総称。
負荷 開 閉器	LBS	Load－break switch， Switch－disconnector	所定の電路電流を開閑及び通電し，かつ，そ の電路の短絡状態における異常電流も投入し，規定の時間，通電できる機器。	$\begin{aligned} & \text { 制御用操 作 } \\ & \text { ス } \begin{array}{c} \text { a } \end{array} \\ & \hline \end{aligned}$	CS	Manual control switch	電気機器を操作するのに用いる制御スイッチ。
				ボタンスイッチ	BS	Button switch	ボタンの操作によって，開路又は閉路する接触部をもつ制御用操作スイッチ。ボタンの操作によって，押しボタンスイッチ及び引きボ タンスイッチがある。
ヒユース	F	Fuse	回路に過電流，特に，短絡電流が流れたとき， ヒューズエレメントが溶断することによって電流を遮断し，回路を開放する機器。				
ブロテクタ	PROF	Protector fuse	ネットワークプロテクタの1構成品で，低圧毝	タンブラスイッチ	TS	Tumbler switch	はん（解）転形の操作部をもつスイッチ。
ヒュース	PROF	Protector fuse	断器と直列に接続し，短絡䉓流などの睪常電流 に対し，その保護のために用いるヒュース。	トクルスイッチ	TGS	Toggle switch	指先で惪線的に往復運動ができるバット状の レバーで操作するスイッチ。 スナッブスイッチともいう。
包装ヒュース	EF	Enclosed fuse	ヒュースエエメントを絶縁体などで包装した ヒュース。	切換スイッチ （セレクタスイッチ）	COS	Change－over switch． （Selector switch）	二つ以上の回路の切換えを行う制御スイッチ。
電力ヒュース	PF	Power fuse	㫣力回路に使用するとューズ。	電流計切換	AS	Ammeter	
高圧カットアウト	PC	Primary cutout	ヒューズリンクを取り付けたカットアウトス イッチ。	スイッチ	VS	change－over switch	
気中開閉器 （気中スイッチ）	ABS	Air－break switch	軍路の開閉を大気中で行う開閉器。	$\begin{aligned} & \text { 電圧 計切換 } \\ & \text { ス } 1 \text { ッ } \end{aligned}$	VS	Voltmeter change－over switch	北党の場合に，倈品入
油 開 閉 器 （オイルスイッチ）	OS	Oil switch	電路の開閉を油中で行う開閉器。	非常スイッチ	EMS	Emergency switch	めの制御用スイッチ。
柱上気中開閣器	PAS	Pole air－break switch	柱上に装備できるように取付けを考慮した気中開閉器。	リミットスイッチ	LS	Limit switch	位置，変位，移動，通過などを検出するため のスイッチ。接点機構にはマイクロスイッチ が多く用いられる。
真 空 開 閉 器 （真空スイッチ）	VCS	Vacuum switch	電路の開閉を真空中で行う開閉器。	フロートスイッチ	FLTS	Float switch	液体の表面に設置したフロートによって，液位の予定位置で動作する検出スイッチ。
柱上真空開閉器	PVS	Pole vacuum switch	柱上に装備できるように取付けを考慮した真空開閉器。	レベルスイッチ	LVS	Level switch	対象物の定めた位置を検出するスイッチ。
ガス開閉器 （ガススイッチ）	GS	Gas switch	電路の開閉を六フッ化硫黄 $\left(\mathrm{SF}_{6}\right)$ などの不活性ガス中で行う開閉器。	近接スイッチ	PROS	Proximity switch	物体か接近したことを無接触で検出するスイッ千。
柱上ガス開閉器	PGS	Pole gas switch	柱上に装備できるように取付けを考慮したガ ス開閉器。	光電スイッチ （光スイッチ）	PHOS	Photoelectric switch． （Photo switch）	光を媒体として，物体の有無又は状態の変化 を無接触で検出するスイッチ。
榶 断 器	CB	Circuit－breaker	定常状態の電路の開閉•通電のほか，異常状態特に短絡状態における電路を開閉し得る機器。	圧カスイッチ	PRS	Pressure switch	加えられた圧力が，規定值に達したときに動作するスイッチ。
配線用遮断器	MCCB	Molded－case circuit－breaker	開閉機構，引外し装置などを絶縁物の容器内 に一体に組み立てた気中遮断器。	温度スイッチ	THS	Thermo switch， Temperature sensitive switch	温度が予定值に達したとき，動作する検出ス イッチ。
漏電遮断器	ELCB	Earth leakage circuit－breaker（英）． Ground fault circuit－interrupter（米）	地絡検出装置，引外し装蹎，開関機構などを絶縁物の容器内に一体に組み立てたもので，地絡電流が所定の条件になったとき，自動遮断させる気中遮断器。	$\begin{aligned} & \text { 流量スイッチ } \\ & \text { (フロースイッチ) } \end{aligned}$	FLS	Flow switch	気体•液体が流れたとき，又は流量が予定值 に達したとき，動作する検出スイッチ。
				始 動 器	STT	Starter	電動機の始動に用いられる一種の制御器。一般には，正常でない条件になった場合や停止 しょうとする場合のための開路機構をもって いる。
油 遮 断 器	OCB	Oil circuit－breaker	電路の開閉を油中で行う逼断器。				
空気遮断器	ABB	Air－blast circuit－breaker	開路を圧縮空気を吹きつけて行う䛧断器。	手動始動器		Manual starter	人力によって操作する始動器。
磁気遮断器	MBB	Magnetic blow－out circuit－breaker	開路を磁界中で行う遮断器。	自動始動器		Automatic starter	外部から指令を与えることによって，自動的 に始動を行う始動器。
気中遮断器	ACB	Air circuit－breaker	電路の開閉を大気中で行う遮断器。	電磁始動器		Electromagnetic starter	電磁接触器を用いた自動始動器。
真空遮断器	VCB	Vacuum circuit－breaker	電路の開閉を真空中で行う遮断器。	電動操作始動器		Motor operated starter	電動機によって開閉器を操作する自動始動器。

表7．3 JEM 1115：2010 配電盤•制御盤•制御装置の用語及び文字記号（抜粋）（つづき）

用 語	文字婄号	外国語（参考）	用語の意味（参考）
不 足 電 圧引外しコイル	UVC	Undervoltage tripping coil， Undervoltage release coil	主回路電圧を直接又は計器用変圧器によって変成して供給し，その値が所定値以下となる と，逼断器又は開閉器を引き外すことを目的 とした引外しコイル。
コンデンサ引外し電源装置	CTD	Capacitor tripping device	コンテンサに蓄積したエネルギーによって䢡断器又は開閉器の引外しコイルを付勢して， それを引き外すための装置。
$\begin{aligned} & \text { 表 示 奵 } \\ & \text { 信号ラン プ } \end{aligned}$	SL （PL）	Signal lamp． （Pilot lamp） （Pilot light）	電灯などの点灯又は消蔵によって，機器，回路などの状態を表示する機器。
表 示 灯［青］信号ランブ［青］	$\begin{array}{\|l\|} \hline \mathrm{BU} \\ (\mathrm{BL}) \end{array}$	Signal lamp （Signal lamp－blue）	－
表 示 灯［緑］信号ランブ［緑］	$\begin{aligned} & \mathrm{GN} \\ & (\mathrm{GL}) \end{aligned}$	Signal lamp （Signal lamp－green）	－
表 示 奵［黄］信号ランブ［黄］	$\begin{array}{\|l\|} \hline \mathrm{YE} \\ \text { (YL) } \end{array}$	Signal lamp （Signal lamp－yellow）	－
$\begin{aligned} & \text { 表示灯 [黄赤] } \\ & \text { 信号ランク } \\ & \text { [黄 } \\ & \hline \end{aligned}$	OR （OL）	Signal lamp （Signal lamp－orange）， （Signal lamp－amber）	－
表 示 灯［赤］信号ランブ［赤］	$\begin{array}{\|l\|} \hline \begin{array}{l} \mathrm{RD} \\ \text { (RL) } \end{array} \\ \hline \end{array}$	Signal lamp （Signal lamp－red）	－
表 示 灯［白］信号ランブ［白］	WH （WL）	Signal lamp （Signal lamp－white）	－
表 示 奵 ［無色透明］信号ランブ ［無色透明］	TL	Signal lamp （Signal lamp transparency）	－
地絡表示奵地絡表示ランブ	EL	Earth lamp	電灯などの明暗によって回路の地絡故障状態 を表示する機器。
照 明 奵	L （IL）	Lamp， （Illuminating lamp）	必要とする明るさを得るための電灯。
$\begin{aligned} & \text { 営 光 奵 } \\ & \text { 蛍光ランブ } \end{aligned}$	FL	Fluorescent lamp	発光の主要部分が放電からの紫外放射によっ て励起される蛍光物質のホトルミネセンスで ある放䉓ランブ。
故障表示器	FI	Fault indicator	機器又は回路の故障状態を表示する機器。
べ ル	BL	Bell	䉓磁石で振動する振動舼にりん（鈴）を打た せる音警器具。
ブザ－	BZ	Buzzer	電磁石で発音体を振動させる音贔器具。
電 池	B	Battery	物質がもつ化学エネルキーを軍気エネルキー として外部に取り出せる機器。
充 電 器	BC	Battery charger	電池に電気的エネルキーを蓄積させる機器。
匕－夕	H	Heater	抵抗体の発熟作用を利用した機器。
スベースヒータ	SH	Space heater	機器内部空䦐の除湿を目的としたヒータ。
$\begin{array}{llll} \text { り モ } & \text { コ } \\ \text { ト } & \text { ラ } & \text { ス } \end{array}$	RT	Remote control transformer	リモコンリレー又はリモコンスイッチの制御及び操作電源に用いる単相小形変圧器。
$\begin{array}{lll} \text { 換 } & \text { 気 } & \text { 殿 } \\ フ & 7 & \text { ン } \end{array}$	FAN	Ventilating fan， Fan	－
接地 開閉器	ES	Earthing switch	電路の接地を目的とした開閉器で，その電路 の短絡状態における異常電流も投入し，規定 の時間通電できる機器。
限流ヒュース	CLF	Current－limiting fuse	アーク電圧を高めることによって，短絡電流 を限流抑制し，遮断を行う方式のヒュース。

用 語	文字記号	外国語（参考）	用語の意味（参考）
リモコンリレー リモコンスイッチ	$\begin{aligned} & \text { RRY } \\ & \text { RSW } \end{aligned}$	Remote control relay， Remote control switch	主回路の開閉を AC 24 V で励磁する電磁石で駆動するリレーと，このリレーの操作回路の開閉を手で操作するスイッチとで構成し，主 に AC300V 以下の照明を遠俩制御する機器。
制 御 器	CTR	Controller	直接的又は間接的に，電気機器の操作•制御 を行う開閉器又はその集合体。
自動 $\square \square$ 調整器自動口口調整装置	$\mathrm{A} \square \mathrm{R}$	Automatic regulator \square	目的とする量を人為を介さずに目標値に調整 する機器。文字記号は，調整する目的の文字 をAとRとの間に記入して表すものとし， に相当する文字の例としては，次のようなも のがある。 V （電圧）， C （電流）， P （電力）， Q （無効電力） ． F （周波数）， PH （位相）， PF （力率）， L （負荷）． SP （速度）， S （すべり）， T （温度）
ソレノイド	SOL	Solenoid	電気的エネルギーを直線運動又は回転運動の機珹的エネルギーに変換することを目的とし た電磁石。
電 磁 弁	SV	Solenoid valve	電磁石と弁機構とを組み合わせ，電磁石の動作によって，流体の通路を開開する弁。
電 動 弁	MOV	Motor－operated valve	電動機によって開閉する弁。
抵 抗 器	R	Resistor	回路の中で抵抗の特性をもつ機器。
加減抵抗器	RH	Rheostat	回路を遮断することなく，抵抗值を加減でき る抵抗器。
可変抵抗 器	VR	Variable resistor	回路を遮断することなく，抵抗値を連続的に加減できる抵抗器。
始動 抵 抗 器	STR	Starting resistor	電動機又は装惪の始動時に，始動電流を制限 する目的で，始動中，回路に挿入する抵抗器。
放電抵抗 器	DR	Discharging resistor	電路及び機器の電磁エネルギー又は静電エネ ルキーを安全に消費させるための抵抗器。
放電コイル	DC	Discharging coil	電路及び機器の電磁エネルギー又は静電エネ ルギーを安全に消費させるためのコイル。
動作コイル	OPC	Operating coil	所定の電気量を付与することによる電磁作用 によって，可動部を動作位㯰に変位させるた めのコイル。
復㷞コイル	RSTC	Resetting coil	所定の電気量を付与することによる電磁作用 によって，動作位置にある可動部を復帰位置 に変位させるためのコイル。
投入コイル （閉路コイル）	CC	Closing coil	電気的エネルギーを供給することによる電磁石作用によって，可動鉄心に連結した投入機構を駆動し，遮断器又は開閉器を投入するた めのコイル。
保持コイル	HC	Holding coil	所定の電気量を引続き付与することによる電磁石作用によって，可動部を引続き動作位置 に保持するためのコイル。
引外しコイル	TC	Tripping coil	電気量の所定の変化による電磁石作用によっ て，䢙断器又は開閉器の引外し機構を制御し， それを引き外すためのコイル。
過電流引外し	OTC	Overcurrent tripping coil	主回路電流を直接又は交流器によって変成し て供給し，その値が所定値を超えると，遮断器又は開閉器を引き外すことを目的とした引外しコイル。

表7．3 JEM 1115：2010 配電盤•制御盤•制御装置の用語及び文字記号（抜粋）（つづき）

用 語	文字記号	外国語（参考）	用語の意味（参考）	接地変圧器	GT	Grounding transformer	中性点を引き出し，接地機器を接続できるよ うにした変圧器。
ガスタービン	GT	Gas turbine	圧縮•加熱•膨張によって，熱エネルギーを機械エネルキーに変換する回転機械。圧縮機，作動流体加㣎器及びタービンで構成する。発電機（G）と組み合わせて，＂ガスタービ ン発電機＂（GTG）として用いてもよい。	絶縁変圧器	IT	Insulating transformer	回路を絶緑する目的に用いる変圧器。
				負荷時タッブ切 換 変 圧 器	LRT	On－load tap－changing transformer． Load ratio control transformer	巻線に設けたタッブに負荷時タップ切換装置 を直接組み合わせて電圧の調整を行う変圧器。
ェンジン	DE	Diesel engine	空気の圧縮然によって然料が自ら着火する内燃機関。 発電機（G）と組み合わせて，＂ディーゼル エンジン発電機＂（DEG）として用いてもよ い。	負荷時タッブ 切 換 装 置	LTC	On－load tap－changing equipment	負荷をかけたまま変圧器のタッブを切り換え る機構をもち，切換えの際，循環電流を適切 に制限し，かつ，過大な電圧降下を回路に生 じないように考慮した装置。
ガスエンジン	GE	Gas engine	基本的にガス状の撚料を用いて運転する機関。発電機（G）と組み合わせて，＂ガスエンジ ン発電機＂（GEG）として用いてもよい。	誘導電圧調整器	IVR	Induction voltage regulator	供給電源に並列な分路卷線と直列な直列巻線 とをもち，卷線の相対的位置を変化させるこ とによって，出力電圧を変化させる機器。
発 電 機	G	Generator	機械動力を受けて電力を発生する回転機。	負 荷 時電 圧 調 整 器	LVR	On－load voltage regulator	通電状態で出力電圧を手動又は自動で変化さ せる機器。
電 動 機	M	Motor	電力を受けて機械動力を発生する回転機。	計器用変圧器			
周波数変換機	FC	Frequency converter， Frequency changer	周波数を変換する交流変換装置。 周波数に加え，電圧，及び必要な場合，相数も変える交流変換装置も周波数変換装置と呼ぶ。		$\begin{array}{\|l} \hline \text { VT } \\ \text { (PT) } \end{array}$	Voltage transformer， （Potential transformer）	ある軍圧值を，これに比例する電圧值に変成 する計器用変成器。VT（PT）と略称される。
				接地形計器用変 圧 器	$\begin{array}{\|l\|} \hline \text { EVT } \\ \text { (GPT) } \end{array}$	Earthed voltage transformer． （Grounding potential transformer）	一次端子の一端を電線路に接続し，ほかの一端を接地して用いる計器用変圧器。
励 磁 機	EX	Exciter	電気機器に界磁電流を供給する発電機。				
同 期 発 電 機 （交流発電機）	$\begin{array}{\|l} \hline \text { SG } \\ \text { (AG) } \\ \hline \end{array}$	Synchronous generator， （Alternator）	機械動力を受けて同期速度で回転させること によって，交流電力を発生させる発電機。	コンデンサ形 計器用変圧器	$\begin{aligned} & \text { CVT } \\ & \text { (PD) } \end{aligned}$	Capacitor voltage transformer． （Coupling capacitor potential device）	コンデンサ分圧を利用した計器用変圧器。
誘導発電機	IG	Induction generator	ほかの原動機を用いて機裁的動力を軸に加 え，同期速度以上に回転させることによって，電力を発生する発電機。				
電動発電機	MG	Motor－generator	電動機と発電機とを機械的に連結して構成し た回転機。	直 流 計 器 用変 圧 器	$\begin{aligned} & \hline \text { DCVT } \\ & \text { (DCPT) } \end{aligned}$	DC voltage transformer， （DC potential transformer）	直流回路用の計器用変圧器。
直流発電機	DG	DC generator	機械動力を受けて直流電力を発生する発電機。	補助計器用変 圧 器	$\begin{aligned} & \text { AXVT } \\ & \text { (AXPT) } \end{aligned}$	Auxiliary voltage transformer， （Auxiliary potential transformer）	計器用変圧器の二次側又は三次側に接続する計器用変圧器。
直流電動機	DM	DC motor	直流電力を受けて機械動力を発生する発電機。				
同期電動機	SM	Synchronous motor	交流電力を受けて機械動力を発生し，定常状龍において，同期速度で回転する電動機。	零相計器用変 圧 器	$\begin{aligned} & \text { ZVT } \\ & \text { (ZPD) } \end{aligned}$	Zero－phase voltage transformer	零相電圧を変成し，検出する機器。
誘導電動機	IM	Induction motor	交流電力を受けて機械動力を発生し，定常状態において，あるすべりをもった速度で回転 する交流電動機。	（コンデンサ形接地電圧検出装置）		（Zero－phase potential device）	
				変 流 器	CT	Current transformer	ある電流値を，これに比例する電流値に変成 する計器用変成器。CT と略称される。
電磁ブレーキ	MB	Electromagnetic brake	電磁作動によるブレーキ。				
電磁クラッチ	MCL	Electromagnetic clutch	電磁力で操作するクラッチ。	補助変流器	AXCT	Auxiliary current transformer	変流器の二次側又は三次側に接続使用する変流器。
圧 縮 機	COMP	Compressor	羽根車若しくはロータの回転運動又はビスト ンの往復運動によって気体を圧送する機械。	ブッシンク変济器	BCT	Bushing current transformer	鉄心，卷線及び口出し線を絶縁がいし内に設 けた構造の変流器。
電動送風機	MB	Moter driven blower	機器•装置を強制的に冷却するために用いる電動機駆動の送風機。	零相変流器	ZCT	Zero－phase－sequence current transformer	線路電流中に含む零相電流を変成する変流器。
変 圧 器	T	Transformer	鉄心及び二つ又は三つ以上の卷線をもち，か つ，それらが相互に位置を変えない機器で，一つ又は二つ以上の回路から交流電力を受 け，軍磁誘導作用によって電圧及び電流を変成して，ほかの一つ又は二つ以上の回路に同一周波数の交流電力を供給するもの。	直流変流器	DCCT	DC current transformer	直流回路用の変流器。
				計 器 用変圧変流器	$\begin{aligned} & \hline \text { VCT } \\ & \text { (PCT) } \end{aligned}$	Combined voltage and current transformer， （Potential current transformer）	変流器及び計器用変圧器を一つにまとめ，外箱などに入れて結線してある計器用変成器。
$\begin{aligned} & \text { ネットワーク } \\ & \text { 変 圧 器 } \\ & \hline \end{aligned}$	NWT	Network transformer	ネットワークを行うに必要な特性をもつ変圧器。	補偵変流器	CCT	Compensating current transformer	差動継電器回路などの変流器二次側の電流值 を一致させるための変流器。
単卷変圧器	AT	Auto－transformer	少なくとも，二つ以上の卷線が相互に共通な部分をもつ変圧器。	整 流 器	RF	Rectifier	一方向にだけ電流を通じる作用をもつ要素を主体とした電力変換装置。

表7．3 JEM 1115：2010 配電盤•制御盤•制御装置の用語及び文字記号（抜粋）（つづき）

用 語	文字記号	外国晤（参考）	用語の意味（参考）
半導体整流器	SR	Semi－conductor rectifier	半箕体の整流作用を利用した交流を直流に変換する電力変換装㦎。
インバータ	INV	Inverter	直流を交流に変換する又は商用電源から可変電圧可変周波交流に変換する電力変換装置。
$\begin{aligned} & \text { DC-DC } \\ & \text { コンバータ } \end{aligned}$	DCC	DC／DC static converter	直流を電圧が異なったほかの直流に変換する電力変換装㦎。
$\begin{aligned} & \mathrm{AC}-\mathrm{AC} \\ & コ ン ハ ゚ ー \text { タ } \end{aligned}$	ACC	AC／AC static converter	交流を電圧が異なったほかの交流に変換する電力変換装置。
無 停 電	UPS	Uninterruptible power system	変換装澅，エネルギー畒積装置（例えば，菩電池）及び必要に応じてスイッチを組み合わ せることによって，交流入力電源の停電に際 し，負荷電力の連続性を磪保することができ る交流電源システム。
限流リアクトル	CLX	Current－limiting reactor	異常電流を一定値以内に制限する目的で設惺 したリアクトル。
直列リアクトル	SRX	Series reactor	－
限流抵抗器	CLR	Current－limiting resistor	電流を一定値以内に制限する目的で設曽した抵抗器。
接 地 抵 抗 器	GR	Grounding resistor（米）， Earthing resistor（英）	系統又は回路などの接地を意図して行うため の抵抗器。
中 性 点接 地 抵 抗 器	NGR	Neutral grounding resistor（米）， Neutral earthing resistor（英）	特に，発電機，変圧器などの中性点を接地す る接地抵抗器。
避 雷 器	$\begin{aligned} & \hline \text { SAR } \\ & \text { (LA) } \end{aligned}$	Surge arrester（米）， Surge diverter（英）， （Lightning arrester）	電気設備に㲔来する雷又は回路の開閉などに よるインバルス過電圧に対し，その端子電圧 を規定値以内に制限し，停電を引き起こさず，現状に復帰する機器。
静電放 電器	SD	Static voltage discharger	－
サージ吸収器 (サージアプリーハ)	SA	Surge absorber	線路から侵入する異常電圧又は機器内部で発生する異常電圧のしゅん（德）度を緩和し， かつ，波高値を低下させるための機器。
$\begin{array}{lll} \text { 電 } & \text { 用 } \\ \text { コンデン } \end{array}$	SC	Static capacitor， Power capacitor	送配電系統の負荷と並列に接続して，力率改善，電圧調整などの目的に用いるコンデンサ。
結合コンデンサ	CC	Coupling capacitor	送電線に搬送波を重畳して通信•信号の送受 を行うようにした通信装置と送電線とを結合 する機器。
$\begin{aligned} & \text { フィル タ タ } \\ & \text { コンデン } \end{aligned}$	FC	Filter capacitor	交流回路に設置し，電源系統に高調波が流入 するのを防止する目的で用いるコンデンサ。
$\begin{aligned} & \text { フロッキング } \\ & \text { コ ィ ル } \\ & \text { (ライントラッブ) } \end{aligned}$	$\begin{aligned} & \mathrm{BC} \\ & (\mathrm{LT}) \end{aligned}$	Blocking coil， （Line trap）	送電線を搬送波の伝送路として用いる場合に， その送電線に直列に接続し，商用周波には低 インビータンス，搬送波には高インビーダン スを与え，搬送波の伝送特性を改善するため に用いる装置。
電圧 検 知器	VD	Voltage detector	静電誘導又は電磁誘導で主回路に直接接触す ることなく，電圧の有無を検知する機器。
リアクトル	L	Reactor	回路の中でインダタタンスの特性をもつ素子。
フィルタ	FLT	Filter	多数の周波数成分をもつ交流回路から，特定 の周波数成分だけを取り出し，ほかを除去若 しくは低減する素子又は装畵。

（2）図記号の選択
規格化されている適切な記号を選択して使用する が，同一の概念に複数の図記号様式が規定されてい ることがある。この場合は，以下の規則に従って選択 する。

（1）可能な限り推奨様式を選択する。
図7．3 既存図記号の置き換え
（2）目的とする適用分類に適切な様式を選択する。
例えば，変圧器は単線図用と複線図用の記号が規定さ れているので，用途に適合した記号を選択する（図7．4）。
規格の図記号で一般用途図記号という修飾子を含む図記号は，より具体的な内容を示す関連図記号全体の元と なっている図記号である。従って，単独で使うのは，使用目的に見合う具体的な図記号が規格化されていない場合 のみにするがよい。通常は，適用分類が回路図，接続図，機能図などになっている一般用途図記号と限定図記号を組み合わした図記号が使用される。
詳細な検討をすすめるような目的の線図では，一般的な記号では不十分なので，それを補足する適切な記号を付け加える必要がある。巻線，端子及びそれらの指定物とい った各パーツを示す必要のある回路図では，完全な形式の記号を用いる必要がある。
（3）図記号の大きさ
図記号の意味はその形及び文脈で決まり，その大きさや線の太さで変わることはない。図記号の最小の大きさは，線の太さ，平行する線の間の隙間，および書き方に関する規則に基づいて決める。JIS C 0617では，図記号の大き さは基準寸法で描かれており，基準寸法での形を保持して使用することが望ましい。可読性確保のため，この部分（ド ットの間隔）の寸法は文字の高さ以上であることが望ましい。6．4．3より文字の高さは1M以上なので，例えば，抵抗は $1 \mathrm{M} \times 3 \mathrm{M}$ よりも大きく描くのが望ましい。
以下の場合は，図記号の大きさを調整するのが良い。
（1）入力数•出力数を増やす場合（例：図7．5）
（2）追加情報を含めたい場合
（3）強調したい側面がある場合
（4）限定図記号として使うことを可能とする場合
（5）図面の縮尺に適合させる場合

S00060［02－01－02］S00060［02－01－02］変形例
図 7.5 入力数－出力数を増やした例

これらの場合でも，その図記号の基本的な形および可能なら図記号間の相対的な大きさは変えない方が良い。
規格化されている図記号は基準寸法で大きさが規定されており，通常は，図面作成時に定めた基準寸法での大き さを維持するように描く（基準寸法で図面全体の図記号の大きさが決まる）。しかし，特定の図表又は用途の状況に合 わせて，図記号の大きさを適切な大きさに変更して使用することができる。この場合の拡大縮小は，なるべく縦横が同一の縮尺•拡大率となる相似形（寸法比率を維持する）で行うようにし，特に理由が ない限り，線の太さは変更しない。用途を区別するなどの場合は，線の太さを変え ても良い。尚，一般用途図記号の「対象」 （S00059（02－01－01），S00060（02－01－02）， S00061（02－01－03））は，入出力の増加や記述する情報に応じて変形できる。
（4）図記号の向き
図記号は信号又は電流の流れが左か ら右又は上から下になるようにデザインさ れている。基本的な向きを変更せざるを得 ない場合は，本来の意味が維持される限 り，図記号を回転したり，鏡像（左右反転，上下反転）としたりしても良い。図7．6はサイ

A	$\frac{3-1}{N 1}$	B	M_{m}^{1}	C	H^{4}	D	2_{1}^{m}
E	${\underset{N}{\mid}}^{-1}$	F	$\left.\sum^{n}\right\|^{2}$	G	$3 \stackrel{y}{y}$	H	\overbrace{m}^{1}

図7．6 サイリスタの図記号の回転，反転の例

A		B	${ }^{\pi} \lambda^{2}$	C		D	$\underbrace{2}_{\pi}$
E		F		G		H	${ }_{2}^{\pi / \pi}$

図7．7 発光ダイオードの図記号の回転，反転の例 リスタの図記号だが，Aに対して，B，C，Dは回転させた図記号，E，F，G，HはA，B，C，Dを反転させたものであり，こ れらはいずれも図記号として描くことができる。
本来の意味が維持されない場合の例として，発光ダイオードとスイツチが挙げられる。発光を意味する矢印は，照射体があるときは光源から照射体に矢先を向けて表し，照射体がない時は光源から発するように矢先を右上へ向け て表すことになっている。従って，ダイオードの記号は回転，反転させることができるが，矢印の表記は，この制限を受ける。従って，図7．7のAの図記号に対して，B，G，Hは使用できるが，C，D，E，Fの図記号は使用できない。
スイッチの記号は，見間違い防止の観点から，メーク接点は，垂直接続線のときは図7．8（a）のA，水平接続線のとき は同図（a）のBの記号のみが使用できる。ブレーク接点も同様に，垂直接続線のときは図7．8（b）のA，水平接続線のと きは同図（b）のBの記号のみが使用できる。又，それらを組み合わせたブレーク・メーク接点は，垂直接続線のときは

（a）メーク接点

（b）ブレーク接点

（c）ブレーク・メーク接点

図7．8 スイッチの図記号
図7．8（c）のA，水平接続線のときは同図（c）のBの記号のみが使用できる。これ以外の表記は使用してはいけないので十分注意する必要がある。これらの記号は，丁度，スイッチの支点を中心にして右回りに回転したときに動作するよ うに描かれている。
ブロック図記号，二値論理素子用図記号，アナログ素子用図記号およびハイブリッド素子用図記号で，文字，限定図記号，グラフまたは入カラベルを含む場合は，底辺から右上方向を見たとき，可読とするように方向を決める。
（5）端子の表現
一般に素子を表す図記号には，必ずしも端子又はブッシン グを示す図記号を追加する必要はない。稀に，端子が図記号の一部である図記号があるが，このような図記号を線図 に使う場合は，そのまま使う必要がある。
（6）接続の位置
規格の各構成部品及び装置の記号は，通常，接続状態で示されている。殆どの場合，接続記号は例示として用いられ

表7．4 接続位置が図記号の意味に影響する例
 ているので，接続記号を他の位置にすることも許される。しかし，これは記号全体に意味が変わらないことが前提で，接続の位置が構成部品の記号の意味に影響を与える場合は規格通りに使用する必要がある。例として，抵抗とリレ一のコイルが挙げられる（表7．4）。
（7）相互参照と技術データ
分断された回路図で用いられる電気用図記号に関す る相互参照は，図記号の近くに記載する必要がある。主として，それらは，水平端子線で表示されている場合 は図記号の上で参照指定の右側に，垂直端子線で表

図7．9 相互参照の位置
－Q2／B7
示されている場合は図記号の左側で参照指定の下に記載する必要がある（図7．9）。尚，相互参照は，参照指定のすぐ上又は左に記載してはならない。
電気用図記号で表される構成部品に関連する技術データは，その図記号の近くに記載する。主として，それらは，水平端子線で表示されている場合は記号の上に，垂直端子線で表示されている場合は記号の左側に配置する必要がある（図7．10）。また，技術データは，参照指定の下側又は右側に記載する（図7．10（b））。
図記号の意味が変わらない場合は，技術データを，図記号内に記載できる（図7．11）。 （8）図記号記入上の留意事項
上記の内容も含めて，図面に図記号を描くときは，以下の点に留意する。

a）

図7．10 技術データの位置

図7．11 記号内の技術データ

① 図記号の大きさを適切な大きさに変更して特定の図表又は用途の状況に合わせて使用してよいが，なるべく相似形となる（寸法比率を維持する）ようにする。但し，線の太さを変えて用途を区別するなどの応用は行って も良い。
② 同一の内容，例えば，変圧器などについて，ニつ以上の図記号が定められているものについては，同一文書 すべてにおいて同一系列（同一様式）の図記号を使用する。
③ 単線図または複線図用のいずれか一方の図記号しか定められていない場合は，必要に応じて他方に準用する ことができる。
④必要な場合には，図記号に番号などを併記し，対照表をつけて，その区別を明示してもよい。
（5）図記号要素，限定図記号及びー般図記号のリストのうち，組合せ図記号の例示数はわずかなので，この規格 に見当たらない場合，または規格で不十分なもの に対しては，この規格にある図記号を適切に組合 せて必要な図記号を作成したり，文字や記号の併記などで補助的な情報を追加してもよい。
（6）図記号は，回転させたり，反転させたりしてもよい。但し，図記号の意味が変更されない場合に限る。
（7）導体の図記号には太さが異なる線を使用してもよい。 7．1．2 可動部分のある部品の表示
可動部分のある部品（例：接点）は，必要に応じて，そ の位置又は状態，および機能理解のために，動作状態 と機能説明を明示する必要がある。尚，単機能のスイッ チなどのように，明らかに動作などが明確なものに対し ては，必ずしも説明などは必要ない。

図7．12 手動制御スイッチの機能を説明するグラフの例

図7．13 速度監視パイロットスイッチの機能説明グラフの例

$11-12 n=0$ のとき，閉
23－24 $100<n<200 \mathrm{~min}^{-1}$ のとき，閉 31－32n＞1400 min^{-1} のとき，開

図7．14 速度監視パイロットスイッチの機能説明の注記の例
（1）動作状態
①単安定の手動又は電機部品（例：リレー，接触器，ブレーキ及びクラッチ）は，非駆動又は非通電状態で示す。し かし，特別な場合では，これらの部品を駆動又は通電状態で示すと図面がより良く理解できる場合がある。この場合には，駆動又は通電状態で示し，図面の中でこの状態であることを明記する。
（2）遮断器及び断路器は，開放（OFF））位置で示す。二つ以上の位置又はどちらの状態にもなり得る開閉器につい ては，必要ならば，図面中で説明を加える。
③）OFFと表記された位置のある多安定の手動制御スイッチは，その位置で示す。OFFと表記される位置のない制御スイッチは，図面で指定する位置で示す。緊急作動，待機，警報，試験などの為の手動制御スイッチは，機器 の正常運転中の位置で，又はその他の指定の位置で示されることが望ましい。
（4）カムや位置，レベル，速度，圧カ，温度などの変動で動作するパイロットスイッチは，図面で指定する位置で示 す。
（2）機能説明
複雑な機能をもつ手動制御スイッチについては，その機能を理解する為に必要なら，図面中に機能説明のグラフな どを含める（図7．14）。
パイロットスイッチについては，その図記号に隣接して動作説明を含む必要がある。この説明は，例えば，以下の3 つのように構成する。
（1）図7．13及び表7．5の左の列の例に従って作成されたグラフ。
表中で，Y軸上の＂0＂の表記は＂接点開＂を示し，＂1＂は＂接点閉＂を示す。誤解が起きない場合は，この表記は省略できる。
② 駆動素子の記号。カム動作又は同様の作動素子では，表7．5の「カム記号」の列に示す記号を使用してもよい。
（3）備考。記号又は表。例として図7．14を参照。
IEC 60617では駆動位置の接点の記号や作動素子のヒステリシスを指定する方法を規定していないので，この方法 は常に可能ではなく，場合によっては別の表記対応が必要となる。
7．1．3 半導体スイッチの表示
メーク接点が記号07－26－01（図7．15（a）），また，ブレーク接点が07－26－03（図7．15（b））のように表される半導体スイッチ は初期状態を，つまり補助電圧源が電源投入された瞬間の状態を示す必要がある。

7．1．4 接点記号の向き

接点記号の向きの基本は，図7．8である。接点記号は，図7．8 のように仮想の動きの方向と一致するように向ける。例えば，部品が駆動されたときの水平な接続線では上方への動きを，
又は垂直な接続線では右への動きである。このことは，完全な部品についての記号が，機械式ラッチ，阻止（インターロック）装

（a）
図7．15 半導体スイッチの記号例

	+5 V	0 V
-D 1	14	7
-C 1	1	2
-D 2	14	7
-C 2	1	2
-D 3	14	7
-C 3	1	2
-N 1	11,24	12,13

図7．16 電力又は電圧供給 の為の接続表示の例

図7．17極性表示の ある線路で表示 された電源の例

図7．18 グループ化電源線路の例

図7．19 電源のある機能ユニットの例

置，遅延装置などについての記号を含む場合に特に重要である。 しかし，複雑な接点構成で，機械式ラッチなどのない回路に分割表示を利用する場合，交差する線を最小にして図面をより見易い配置にすることにつながるならば，已むを得ず接点記号の向きを変更してもよい。

7．1．5 電源回路の表示

装置の電力又は電圧供給の要求事項を満足する接続 は，回路図中に表示する必要があるが，他の図面に表示してもよい。この接続は，図式に示されてもよく，表又 は注記で指定されてもよい（図7．16）。尚，図7．16の電源の接続線にある×の記号は，その接続線が電源供給の線 であることを示す。
電源線は，回路分岐とは反対側で示し（図7．17），回路 の一方の上部又は下部に一緒にまとめることが望ましい （図7．18）。電源線は図面の配置の為に分断してもよいが，分断された線の各端部が相互に明示し，接続関係が分 かるようにする必要がある（図7．19）。
ブロック記号に対する電源線は，信号の流れに対して直角に描く（図7．20）。
これらの方法は，機能又は構成ユニットの内部で使用 してもよい（図7．19）。

図7．20ブロック記号がある電源線路の例

図7．21 電源部分が ある部品の例

図7．22 電気的機能に関連する機械的機能の例

図7．23 交流図記号の描き方

ニつ以上の記号で表示できる部品は，それらのうちの一つである電源接続だけを示してもよい（図7．21）。
7．1．6電気的及び非電気的回路の組合せの表示
非電気的及び電気的機能間の関連は，明確に表示する必要がある（図7．22）。矢印の一方の端の点（ドット）は，モ ータの回転の向き及び抵抗のしゅう動接点の動きの向きに対応している。
7．1．7 電気用図記号の描き方
［1］交流図記号 \＆周波数
商用周波数記号のサイズは，
$2 \mathrm{M} \times 0.5 \mathrm{M}$ で， 1 M の半円を真横に並べて，共通接線で結ぶ （図7．23）。可聴周波数，高周波記号は，商用周波数記号を 1M間隔で縦に並べて記入する（図7．24）。

（a）高雕

（b）可渀周波（c）商用周波
図7．24 交流図記号

［2］可変記号

可変記号は，サイズが $3 \mathrm{M} \times 3 \mathrm{M}$（図7．25），傾き45度の斜線で主記号に交差させて描く。矢印部分は，先端の角度 が約30度，長さが約1M（斜線の約1／4）の塗りつぶしで描く（図7．26（a））。連続可変の場合，先端に斜線に平行に連続可変記号（長さ1M（斜線の約1／4）（図7．26（d），（e）），ステップ可変の場合，右上端にステップ可変記号 $(2 \mathrm{M} \times 1 \mathrm{M}, ~ 2 \mathrm{M}$ の線の両側に0．5Mの短線）（図7．26（f），（g）），非線形可変の場合，斜線の下端に水平に長さ1Mの水平線（図7．26（b）），自動可変は斜線の両側に長さ約 1Mの矢印（図7．26（i）），プリセット調整（半固定）の場合，先端に1Mの短線をT字形に描く（図7．26（c））。

図7．25 可変記号 （02－03－01）
（a）

（h）

線形可変
（i） ステップ可変 自動可変 ステップ数付
［3］抵抗器
各種の抵抗は図6．25の一般図記号（大きさ： $1 \mathrm{M} \times 3 \mathrm{M}$ ）に可変記号やタップなどを付けて表す。図7．27は規定され ている図記号である。
接続線は短辺側から出す。タップは長辺側から出すが，分流器や個別の電流端子付及び電圧端子付抵抗器は端面から出す。可変記号は上記のように記入する。
摺動接点付抵抗器は，摺動接点記号を付けるが，図 7．27（d），（e）のようにL字型に曲げる場合は，長さ1．5Mの

（a）抵抗器

（f）固定タップ付抵抗器
（b）可変抵抗器（c

（g）個別の電流端子及び電圧端子付

抵抗器，分流器
図7．27 各種抵抗器の記号の例

所で曲げ，長さ約0．75Mの塗りつぶし矢印を付ける。図7．27（c）のイタリック体のUは電圧依存性があることを示す。こ の記号が，イタリック体の Θ のときは温度依存性があることを示す。
炭素積層抵抗器は縦線が等間隔に5本，発熱素子は縦線が等間隔に3本なので，本数を間違えないように注
意する必要がある。
［4］コンデンサ
コンデンサは，平行な2本の2Mの長さの線を間隔0．4 Mで描き，線の中央から接続線を出す（図7．28（a））。
貫通コンデンサは，平行な2本の2Mの長さの線を間隔1Mで描き，その中央に，電極に平行な貫通する接続線を描く（図7．28（b））。
電解コンデンサのような有極性コンデンサで は，コンデンサの記号の中心から凡そ $1 \mathrm{M} \times 1 \mathrm{M}$ だけ離れた位置にその中心があるように陽極記号（＋）を添える（図7．28（c））。
可変コンデンサは，コンデンサの記号に可変記号を付ける（図7．28（d））。
温度依存性をもつコンデンサには，イタリック体の Θ を添え （図7．28（e）），電圧依存性があるコンデンサにはイタリック体の Uを添える（図7．28（f））。
［5］コイル（巻線）
コイル（巻線）（インダクタ，チョーク，リアクトル）（図7．29（a））は，原則として1つの巻線部を4つの直径1Mの半円を横に並べ て描く。接続線は両側から，タップは半円の交わった所から出す。タップ数が多いなどの場合，半円の数を調整できる。 ギャップ付き磁心入りインダクタ（リアクトル）（図7．29（b））は長さ 1．5Mの線を2本，半円部から0．25M離して描く。2本の線の間隔は1Mである。磁心入りインダクタ（リアクトル）（図7．29（c））は，長さ4Mの線を半円部から0．25M離して描く。磁心入り同軸チ ョーク（リアクトル）（図7．29（d））は，2つのコイルを1M離して平行に描き，同軸のシールド側のコイルの両端に，コイル端よ り2M離れた所を中心とする直径2Mの円を描く。磁心は，4M の直線で芯線のコイルより0．5M離して描く。連続可変磁心入 リインダクタ（リアクトル）（図7．29（e））は，磁心入りインダクタ（リア クトル）の図記号に連続可変の記号を付けて描く。ステップ可変インダクタ（リアクトル）（図7．29（f））は，長さ2Mのステップ記号 とタップを切り替える矢印を描く。固定タップ付インダクタ（リア クトル）（図7．29（g））は，半円の交わる所にタップの線を描く。図 7．29（h）はフェライトビーズの記号で線を示す直線に1M×2Mの コの字型の記号を付ける。尚，磁心は，昔はフェライト系は破

図7．28各種コンデンサの記号の例

図7．30電池の図記号

表7．6 操作機構などの図記号の例

名 称	図記 号	名 称	図記号
遅延動作 （半円中心方向動作の遅延）	\because	押し操作	E－－
		近隣効果操作	
遅延復帰 （半円中心方向動作の遅延）	$=1$		
		接触操作	
（三自動復帰は復帰方向を示す）	4		
戻り止め・非自動復帰	－－－	非常操作	$\mathrm{O}-$
手動操作	－－	足踏み操作	－－
保護付手動操作		電磁効果による操作	
引き操作	J－－		
回転操作	F－－	液面による操作	

表7．7 開閉装置の限定図記号

名 称	図記号	名 称	図記 号
接点機能	0 ：	自動引外し機能	\square
遮断機能	\times	位置スイッチ機能	∇
断路機能	－		
負荷開閉機能	σ	イッチの確実動作	Θ

［6］変圧器・リアクトル
変圧器は，前述したが，図7．4のように様式1と様式2があり，様式1は単線図用，様式2は複線図用である。様式2の図記号は前項のコイルと同じ で，原則として，巻線を4つの直径1Mの半円で表して変圧器を描く。タップ や可変などの表現はコイルと同じである。様式1では，巻線を直径6Mの円 で表す。

［7］電池

図7．31 多段スイッチの図記号
陽極を長さ4Mの線，陰極を長さ2Mの線で表し，電極間隔（すきま）が陰極の長さの $1 / 5$ ，つまり0．4Mになるように線を描く（図7．30）。昔は電池セル1個の電池と電池セル複数の積層電池は違う図記号だったが，現在はいずれも同じ図記号である。

（c）Nチャネル接合型FET

（d）Pチャネル接合型FET

（e）Pチャネル MOSFET

（f）Nチャネル MOSFET

図7．32トランジスタの図記号の例
［8］開閉装置及び制御装置
電気回路の開閉•切換え・制御に用いる装置は，操作機構と接点との組合せで多種多様なので，それを表す図記号は，操作記号（7－4及び7－5ページの操作機構などの記号（表7．6））や接点記号（7－16ページの限定図記号（表7．7））な どを組合せて表現する。
動作したときに閉路するメ一ク接点（a接点），動作したときに開路するブレ—ク接点（b接点），動作したときに一方が閉路，他方が開路するブレ—ク・メーク接点（c接点）については，その図記号と使用の制限を7．1．1（4）で説明した。すな わち，可動接点はサイズが $1 M \times 2 M$ の斜線で表し，メ一ク接点では，可動接点が垂直接続線のときは左側，水平接続線のときは下側になるように，ブレ一ク接点では，可動接点が垂直接続線のときは右側，水平接続線のときは上側になるように描く（図7．8）。動作の支点を表す○や○は，昔は記入したが，現在は原則として記入しない（支点の記号が付いている一部の規格の記号では必ず記入する）。
制御用スイッチは，操作記号や接点記号の組合せに特性量記号などを付記して，スイッチの種類や機能などを厳密に表示する。例えば，表7．5の液面による操作の図記号とメーク接点図を付記して，スイッチの種類や機能などを厳密に表示する。例えば，表7．5の液面による操作の図記号とメーク接点図記号を組み合わせ，これに作動依存性図記号の＂＞＂や＂＜＂を特性量と共に付記すると，液面が或るレベル以上，又は，或るレベル以下で作動するレベルス イッチを表現できる。
［9］多段スイッチ
多段スイッチは，切換位置が4位置以下と5位置以上では使用する記号が異なり，4位置以下では図7．31（a）を，5位置以上では図7．31（b）の図記号を使用する。
［10］トランジスタ
各種トランジスタの図記号を1Mの格子ドットと共に図7．32に示す。
PNP及びNPNトランジスタは，2Mの縦線の中央からベースの線を，縦線の中央の0．5M上又は下から，縦線の中央 から $2 \mathrm{M} \times 2 \mathrm{M}$ 離れた位置ヘエミッタとコレクタの線を引く。外囲器がある場合は，縦線の中央から0．5M離れた点を中心とする直径4Mの円を描く。接合型FETは，3Mの縦線の下から0．5Mの所からゲート及びソースの線を，上から0．5M の所からドレインの線を水平に描く。従って，ドレインとソースの線の間隔は2Mである。MOSFETは，3つの線からなる全長3Mの縦の破線から約0．4M離れた所に2Mの長さの縦線を描き，ケ一トの線を水平に描く。上の短線からドレイン の線を，下の短線からソースの線を，それらの間隔が2Mとなるように水平に描く。
7.2 二値論理素子記号

二値論理素子は，従来からMIL規格の図記号が良く使用されているが，この記号は，ANSI／IEEE Std 91aに独自図記号として組み込まれているものの，IEC規格やJIS規格の記号ではない。IEC規格やJIS規格でも，MIL規格図記号 の使用は認められているが，これらの2種類を混在して使用することはできず，いずれかに統一して使用する必要が ある。IEC規格（JIS規格）の図記号は，MIL規格では表し難い複雑な機能を正確に表すことができる。
二値論理素子や演算増幅器（オペアンプ）をはじめとするアナログ素子の図記号は，四角形の記号枠の内側と外側 に各種記号を記入して表現される。四角形であるので，アナログ・デジタル回路を1つにまとめて表現することができ る。この節では，アナログ素子の図記号が入った図記号も例示する。
接続線の数が定まっていないなどもあり，二値論理素子やアナログ素子の図記号の記号枠の大きさは規定されて いないが，JIS C 8222－1に従い，基準寸法の格子などを基にして大きさを定める。例えば，接続線の間隔は，文字を記入することを考慮して2Mにする（文字の高さは1M以上，接続線の間隔は文字の高さの2倍以上），接続線の間隔，数及び適切な配置を考慮すると，記号枠の一辺は最低4M以上が必要となるなどである。また，後述のように図記号 が縦や横に連結されたり，記号枠の中に図記号が挿入されたりするので，これらも考慮する必要がある。
二値論理素子の図記号は，論理機能の実行が可能な物理装置又はその組合せを表現する為のもので，電気関係 への適用を目的として作成されているが，その多くは，電気によらない装置，例えば，空気式，液体式，又は機械式装置にも適用できる。

7．2．1 基本要素

図7．33は，二値論理素子記号で基本となる記号枠で，（a）は素子記号枠，（b） は共通制御ブロック記号枠，（c）は共通出力素子記号枠である。
記号枠内には，記号枠内の論理素子がもつ論理機能を表現する内部機能記号，入力側，出力側の枠線の両側には，入力される信号や出力される信号に及ぼす論理状態を表現する入力機能記号，出力機能記号が記入される （図7．34）。原則として，内部機能記号は必須だが，素子の機能が入力機能記号や出力機能記号で完全に規定される場合は省略できる。これらの記号以外に依存関係を示す記号が用いられる。又，主に理解の為に，入力に対する

図7．33 二値論理素子の記号枠

出力の関係を示す表などで内部機能が付記されることもある。
これらの記号以外に，付加情報と して，規格で規定されていない特定 の入出力に対する情報を関連する入力（出力）に隣接した入力（出力）機能記号の後（前）に，又，素子の一般的な論理機能に関する情報を記号枠内に［］でくくつて示すことができる （図7．35）。
内部機能記号は，素子の入力と出力の論理状態の関係を示す記号，
入力機能記号は，入力の外部論理状態と内部論理状態の関係を示す記号，出力機能記号は内部論理状態と外部論理状態の関係を示す記
内部機能記号を省略しても良い。
3）内部機能記号の望ましい位置は記号枠内の上部だが，場合
によっては，中央部でも良い。
$\begin{array}{lll}\text {（a）2値論理図記号の構成 } & \text {（b）2値論理図記号 } & \text {（c）MIL記号 }\end{array}$
号である。同様な方式 で記述されるアナログ素子の記号では，上記 の論理状態をアナログ信号の状態に置き換え て解釈すれば良い。
必ずしも，図7．34のす ベてのアステリスクで示す位置に記号がある

図7．35 付加情報の記入例訳ではないが，すべての記号があったとすれば，入力線から入る入力信号は，概ね，先ず記号枠外側の入力機能記号に従って処理され，その後，記号枠内 の入力機能記号，内部機能記号，出力機能記号，記号枠外の出力機能記号の順で処理されて出力信号 となる。
表7．8に記号枠内に記入される記号，表7．9に入出力及び素子内部での接続を表現する記号の例を示 す。また，図7．34に従来から使用されているMIL記号 （図（c））とJIS記号（図（b））を対比して記入した。
7.2 .2 依存関係文字記号と識別番号

入力（出力）の論理状態が他の入力（出力）の論理状態に依存して決まることを依存関係という。表7．10は，依存関係を示すのに用いられる文字記号であり，識別番号と組み合わせて用いられる。
（1）G（AND（論理積）依存関係），V（OR（論理和）依存関係），$N($ 論理否定依存関係）は，入力（出力）相互間の ブール代数的な関係を示す。
②）C（コントロール依存関係）は，順序論理素子のタイ ミング入力又はクロック入力を識別し，どの入力が， それにコントロールされるかを示す。
（3） S （セッ依存関係ト）及びR（リセット依存関係）は，双安定素子のS入力とR入力が両方とも内部論理状態＂1＂となった場合の内部論理状態を規定する。
（4）EN（イネーブル依存関係）は，イネーブル信号を識別すると共に，どの入力（出力）がその影響を受ける か（例えば，どの出カピンがハイインピーダンスにな るかなど）を示す。
⑤）M（モ—ド依存関係）は，素子の動作モ一ド選択入力を識別すると共に，入力（出力）がどの動作モ一ドになるかを示 す。
（6） X （トランスミッション依存関係）は，この入力（出力）に影響されるすべてのポート間の伝送経路は，内部論理状態が ＂1＂のときに接続され，内部論理状態が＂0＂のときに確立されないことを示す。
（7）Z インターコネクション依存関係）は，この入力（出力）の影響を受けるすべての入出力の内部論理状態は，他の依存関係表記で変更されない限り，Z入力（出力）の内部論理状態と同じになることを示す。

表7．9 入出力機能及び内部接続に関する記号の例（つづき）

記 号	説 明
$\left[\begin{array}{l} \cdots---\bar{l} \\ \rightarrow= \end{array}\right.$	シフトス力（左から右または上から下）：この入力の内部状態が 1 になるごとに，素子内情報が m 析移動する。 $\mathrm{m}=1, ~ 2, ~ 3, ~ \cdots$ 。但し， $\mathrm{m}=1$ の場合は省略可。
$[\stackrel{-\infty}{\leftarrow-}$	シフトス力（右から左または下から上）：この入力の内部状態が 1 になるごとに，素子内情報か m 桁移動する。 $\mathrm{m}=1,2, ~ 3, ~ \cdots$ 。但し， $\mathrm{m}=1$ の場合は省略可。
$\left[\begin{array}{l} ----- \\ +m \end{array}\right.$	カウントアップ入力：この入力の内部状態が 1 になるごとに，素子内情報が m 単位だけ増加する。 $\mathrm{m}=1, ~ 2, ~ 3, ~ \cdots$ 。但し， $\mathrm{m}=1$ の場合は省略可。
$\left[\begin{array}{l} -\infty-- \\ -m \end{array}\right.$	カウントタウンスカ：このス力の内部状龍が 1 になるごとに，素子内情報が m 単位だけ減少する。 $\mathrm{m}=1, ~ 2, ~ 3, ~ \cdots$ 。但し， $\mathrm{m}=1$ の場合は省略可。 i略可。
7	内部接続：右蔇素子入力の内部状態 1 （ 0 ）が，左㑡素子出力の内部状態 1 （ 0 ）に対応する。混乱がなければ一は省略可。
§	否定を伴う内部接続：右側素子入力の内部状態は，左側素子出力の内部状態と逆になる。
p	タイナミック特性を伴う内部接続：右側素子入力の（一時的な）内部状態は，左側素子出力 の内部状態が 1 から 0 の変化で 1 になる。
$*\left[_{---------}^{--}\right.$	非論理接続端子。例えば，電源電圧端子，CR端子など。
$\cap{ }^{----}$	アナロク信号入力

表7．10従属関係を表す機能記号の例

依存関係のタイブ	$\begin{aligned} & \text { 文字 } \\ & \text { 把号 } \end{aligned}$	影響を与える入力の状態と影嚮を受ける入力／出力への作用	
			状態 0
アドレス	A	アクション可能（アドレス選択）	アクション不能（アドレス非選択）
コントロール	C	アクション可能	アクション不能
イネーブル	EN		- 被影響入力アクション不能 - 開放または 3 ステート外部出力はハイインビーダンスとなる （3 ステート出力の内部状懸は影響なし） －バッシブ・ブルダウン出力はLLベル，バッシブ・ブルアッ ブ出力はH レベルとなる －他の出力では 0 状態となる
AND（論理積）	G	アクション可能	0 状態となる
モード	M	アクション可能（モード選択）	アクション不能（モード非選択）
論理否定	N	反転状態	作用なし
リセット	R	被影響出力は $\mathrm{S}=0, \mathrm{R}=1$ と同じ状龍となる	なる 作用なし
セット	S	被影響出力は $\mathrm{S}=1, \mathrm{R}=0$ と同じ状態となる	なる 作用なし
OR（論理和）	V	状態1をとる	アクション可能
トランスミッション	X	伝送経路確立	伝送経路非確立
インターコネクション	Z	状態1をとる	状態 0 をとる

隹を反枟したものが適用される
＊この图で「アクション」とは
右の意味で使用している。 $\left(\begin{array}{l}\text { ・その影響人力は，素子の機能に対し通常定莪どおり作用する。 } \\ \cdot \text { その被影響出力は，素子の機能によって定まる内部論理状龍をとる。 }\end{array}\right.$

図7．36はG依存関係 の例で，（a）では，入力 bにはG1と指示され，入力aと入力cに識別番号1が，入力cの識別番号の上に＂—＂が付けられているている ので，入力bと入力aと の，及び入力bの論理

（a）

（b）

図7．36 G依存関係の例

（a）
＝

（b）
図7．37 V依存関係の例
否定と入力cとのAND（論理積）がとられる。そして，AND（論理積）した結果が素子内部機能で処理されることになる。
図7．36（b）では，論理素子の出力にG1と指示されているので，出力 と入力aのAND（論理積）がとられて，その結果が素子内部機能で処理されることになる。
図7．37（a）では，入力aが出力cに影響し，素子内部機能で処理された出力と入力aのOR（論理和）が出力cとなる。（b）では，上の素子の出力が下の素子の出力に影響する。つまり，上の素子の出力と下の素子の素子内部機能で処理された出力とのOR（論理和）が出力bとなる。

図7．38 N 依存関係の例

図7．38はN依存関係の例で，出力cは入力aに影響される。影響されな いときは，出力bと同じである。入力aが論理状態＂1＂のときだけ影響を受け，出力cには出力bを論理否定したものが出力される。論理状態＂0＂ のときは影響されず，出力cは出力bと同じである。つまり，入力aと出力 bとのXOR（排他的論理和）がとられたのと同じ結果になり，それが出力 c

図7．39 X 依存関係の例 となる。
図7．39はX依存関係の例で，（a）ではX1，X2と書かれている端子 の入力で， $1 / 2$ と書かれている端子間の伝送の確立が制御される。 この場合の＂1／2＂は，＂1又は2＂を意味する。従って，X1，X2の入力のいずれかが論理状態＂1＂のときに伝送が確立する。これに対

図7．40 Z依存関係の例 して，（b）は，＂1，2＂となっており，これは＂1と2＂を意味する。つま り，X1とX2が共に論理状態＂1＂のときに伝送が確立する。
図7．40はZ依存関係の例で，素子内部機能で処理された出力 の論理状態と識別番号＂1＂の端子の論理状態は同じになる。但 し，＂1＂の上に＂—＂が記入されているので，論理素子へ入力さ れる信号の論理状態は，素子内部機能で処理された出力の論理状態を否定したものになる。尚，aと書かれた端子には，素子内部機能で処理された出力の論理状態を否定したものが出力される。
図7．41はG依存関係とZ依存関係の組合せの例である。端子aのGの記号の横には識別番号素子＂1＂が付いているので，＂1＂と書かれた端子bの入力と AND（論理積）がとられて，その信号が内部機能で処理される。一方，端子のZ の記号の横には識別番号＂2＂が付いており，このことは端子cからの出力の論理状態が，＂G1＂で処理された出力の論理状態と同じであることを示している。 つまり，素子内部で，あたかもAND素子とバッファがあるか如く，信号処理が行 われるということである。

7．2．3 記号枠の組合せ

スペースを節約する為に関連する素子群の記号枠を1つにまとめたり，他の記号枠内部に組み込ませたりすることができる。
記号枠を縦に連結した場合，すなわち，2つの記号枠の共通な線が信号の流れの方向に平行な場合（図7．42）は，素子間の論理的な接続はな いものとする。但し，2方向の信号の流れが存在する配列，例えば，共通制御ブロック，共通出力素子又は依存関係表記で示された配列には必ずしも適用されない。尚，図において，3つの点は，入力（出力）線が複数ある場合の省略を意味する（6．4．8参照）。
記号枠を横に連結した場合，すなわち，2つの記号枠に対して記号枠 の共通の線が信号の流れの方向に垂直である場合（図7．43）は，両素子 の間には少なくとも1つの論理的接続があるものとする。この場合，それ ぞれの接続は，共通の線の片側または両側に入出力機能記号を付け て示すことができる（図7．43）。論理接続の数が多い場合には，図7．43の ように，内部接続図記号12－08－01（図中の共通な線にある図記号＂—＂） を使用してもよい。共通の線のどちら側にも表示がない場合，論理的接

図7．43 記号枠の横の組合せ

続は1つしかないものとする。尚，共通制御ブロック は素子ではないので，共通制御ブロックヘ，又は共通制御ブロックからの論理的接続は以下の場合以外は存在しない。

1）共通制御ブロックと附属配列間
2）明示的に表示した場合

7．2．4 共通制御ブロック

共通制御ブロックが描かれている場合，例えば，図7．44に示すように，共通制御ブロックに配列して接続された論理素子への共通な制御線が存在する。
共通制御ブロックには，複数の配列素子に共通な

共通制御ブロックの共通入力

共通制御ブロックの配置

図7．44 共通制御ブロックの概要

入出力又はどの配列素子にも関連しない入出力を記入でき，これらの入出力には，必要に応 じて適当なラベルを付ける必要がある。
共通制御ブロックに示された入力が，依存関係表記における影響入力である場合は，対応 する識別番号が付けられた配列素子だけに対 する入力であることを示し，そうでない場合，す なわち，入力が依存関係表記における影響入力でない場合は，配列素子すべてに対して共通であるか，又は影響を与える入力であること を示す。
共通制御ブロックは関連素子配列のどちらか の片端に配置する（図7．44）。
明記されていなければ，共通制御ブロックの

（b） $74 \mathrm{HC175}$ の内部システム 4 図

図7．45 74HC175の二値論理図記号
次の素子は最低順位の素子であるとみなす。
共通制御ブロックを含む二値論理図記号の例を図7．45に示す。
7．2．5 共通出力素子
すべての配列素子に対して共通な出力は，共通出力素子の出力 として示すことができる。配列素子が複数個の出力をもつ場合は，常に同じ内部論理状態をもつ出力の素子に限って共通出力素子を使用することができる。
各々の素子から共通出力素子に対して1つの内部接続がある場合，それらの内部接続は表示してはならない。
共通出力素子が別に入力をもっても良いが，その入力を明示する必要がある（図7．46）。
配列素子の1つの出力に対応する共通出力素子の各入力は，その出力と同じ内部論理状態をとる（図7．46）。
共通出力素子は次のいずれかに表示する。
1）共通制御ブロックの内部（図7．47（a））
2）素子配列の最後で，もし共通制御ブロックがあれば， その反対側（図7．47（b））
共通出力素子の配列を示す場合は，二重線は1回示すだけで良い（図 7．47（c）：共通出力素子が2つの場合）。
7．2．6 図記号の省略
同じ機能記号が繰り返し現れる素子の配列では，混乱を生じるおそれ がない場合には，最初の素子の内部にだけ機能記号を明記し，繰り返す

図7．46 共通出力素子の概要

（a）
（b）素子記号は省略できる（図7．48）。図中，＊，＊a，＊b，＊cは機能記号を示す。各素子が個々に同じ部分配列をもつ素子配列では，最初の素子だけを完全 に記述し，その他の素子は省略し，単純な記号枠だけで表してもよい（図7．49）。依存関係表記で図記号を簡略化することができる。依存関係表記における

図7．47 共通出力素子の配置

（c）

図7．48 繰り返す同じ機能記号の省略例

（a）

図7．49 同じ部分配列をもつ素子配列の省略例

（a）

b）
図7．50複数の端子をもつ
同じ素子配の省略例

影響入力（出力）及び被影響入力（出力）の識別番号は，配列素子それぞ れで異なるものとする。

（a）

図7．51 外側で結線される複数端子の簡略化の例

同一素子からなる配列を単純化して示す場合，各素子の記号枠の外側で結線される複数の端子があれば，最初 の素子だけにそれらの複数の線を示して，他の単純化した素子には1本の線を示すだけでよい（図7．50（a））。
記号枠の外側で，上記結線に共通な図記号は，この1本の線に表示する（図7．50（b））。記号枠の外側で，上記結線 に共通でない図記号は，省略してもよいし，最も適した組を示してもよい。

7．2．7 外側で結線される複数端子の簡略化

同一素子からなる配列を単純化して示す場合，各素子の記号枠の外側で結線される複数の端子があれば，最初 の素子だけにそれらの複数の線を示して，他の単純化した素子には1本の線を示すだけでよい（図7．51（a）上，（b））。記号枠の外側で，上記結線に共通な図記号は，この1本の線に表示する（図7．51（a）下）。記号枠の外側で，上記結線に共通でない図記号は，省略してもよいし，最も適した組を示してもよい。
7.2 .8 論理図への適用

［1］論理規約

正論理 ${ }_{0} \int^{-1}$ 負論理 ${ }^{0} L_{1}$
（a）
图7．5 ベルの関係，つまり，単一論理規約又は論理極性直接表示のいずれで描くかを確定させ，その規約で統一して描く必要がある。 （1）単一論理規約（相対表記）
外部論理状態＂0＂と外部論理状態＂1＂を物理的な論理レベルである＂Lレベル＂と＂Hレベ ル＂に対応させる規約で，正論理と負論理が ある。
論理図内のすべての入力及び出力におけ る論理規約は，正論理又は負論理のいずれ かの1種類とする。特に明記されていなけれ ば，正論理とする。単一論理規約では，必要 に応じて，論理否定子（図7．53中の記号＂○＂） を使用してもよいが，極性表示子（図7．45中の記号＂$\Delta "$＂を使用してはならない。

図7．53 正論理規約の論理図の例

1）正論理規約
外部論理状態＂0＂を物理量の小さい正の値＂Lレベル＂に，外部論理状態＂1＂を物理量の大きい正の値＂Hレベ ル＂に対応させる規約で，必要があれば，図7．52（a）の記号を＂正論理＂又は＂POSITIVE LOGIC＂の文字を付け て図面中に記入する。
2）負論理規約
外部論理状態＂0＂を物理量の大きい正の値＂Hレベル＂に，外部論理状態＂1＂を物理量の小さい正の値＂Lレベ ル＂に対応させる規約で，必ず，図7．52（b）の記号を＂負論理＂又は＂NEGATIVE LOGIC＂の文字を付けて図面中 に記入する。
図7．53に正論理規約の論理図の例を示す。
（2）論理極性直接表示規約（絶対表記）
内部論理状態と外部論理レベルの関係を極性表示子の有無で直接表す規約で，極性表示子があると，物理量の小さい外部論理レベルの＂Lレベル＂と内部論理状態＂1＂が，物理量の大きい外部論理レベル＂Hレベル＂と内部論理状態＂0＂が対応する。極性表示子がないと，外部論理レベルと内部論理状態の関係は，その逆になる。論理極性直接表示規約では，内部接続を除いて，論理否定子を使用してはならない。

論理否定子は外部論理状態（0又は1）を反転する記号であり，物理的な外部論理レベル（Lレベル又はHレベル）との対応は，正論理であるか負論理であるかを指定することで決まる。これに対し て，極性表示子は外部論理しベ ルの極性を反転させるものであ る。つまり，外部接続では，論理否定子は単一論理規約の論理図でしか使用できないし，極性表示子は論理極性直接表示規約 の論理図でしか使用できない。

表7．11 各種信号方向への記号の適用例

水平接続線		垂直接続線	
信号方向，左から右	信号方向，右から左	信号方向，下から上	信号方向，上から下

＊：一般的説明記号，IEC 60617－12に従い，上端に位置させるのが好ましい。 L1，L2，L3：入力ラベル L4，L5：出カラベル

尚，論理極性直接表示規約で描かれている論理図に極性表示子がない場合には，論理極性直接表示規約が適用されていることを図面又は補足文書に明記する必要がある。
［2］信号の向き
電気線図では，信号の流れは，原則として，左から右又は上から下と決め られている（6．5．1参照）。しかし，二値論理素子記号は，原則として信号の流 れが左から右で規定しているので，上から下に描くと図記号に対する入力線 と出力線の位置が左から右の場合と逆になるだけでなく，二値論理素子記号 や信号名などの文字は入力／出力線に沿って下から上に向かって横書きす ることになる。つまり，一見すると，下から上に信号が流れているように錯覚 するので，読み間違い易く，論理図で上から下に描くのは好ましくない（図7．54）。従って，図記号及びその説明では，信号の流れの方向は，原則として左から右へとし，号の流れの方向が右から左の場合は，図記号の説明として，又は図記号自体に明示する。
信号の流れの向きに合わせて，論理図記号の入力線は論理図記号の左側又は上側に，出力線は論理図記号の右側又は下側に付くように記入する必要がある。図表の配置の助けとなるなどの為に，これ以外の方向，すなわ ち，右から左又は下から上にしても良いが，その場合は信号の向きを明確に表示する必要がある。つまり，接続線に信号の向きを示す矢印を付け（表7．11），極性表示子が使用される場合は，極性表示子の向きを左向き又は上向きに する。この場合，矢印は記号枠に触れてはならない。
端子線の信号の流れの方向が不明確な場合には，その線に信号の流 れの方向を指し示す一方向矢印，または双方向信号の流れを表す図記号のいずれかを印す。
情報の流れを記入する場合も，同様だが，この場合は水平接続線の上側，又は垂直接続線の左側に接続線に沿って記入する（図6．54）。
［3］二値論理要素の表現
論理図では，理解を容易にする為，論理否定の数は最小限にすること が望ましい。例えば，接続線の駆動側及び被駆動側の両方に示されてい る論理否定（二重否定）の記号は，論理図を回路図に変換するなどの特別な要求がない限り，省略することが望ましい（図7．55）。
論理回路図では，入力における論理極性又は論理否定の表記は，その入力に供給される信号源のものと同じものとすることが望ましい（図7．54）。 これにより，図面の読み手は，出力の内部論理状態をその出力で駆動さ れる入力の内部論理状態としてそのまま適用できる。しかし，信号によっ ては，接続されているすべての入出力が同じ論理極性又は論理否定の表記をもつように記号の組を選べるとは限らない。信号源の論理極性又 は論理否定表記と，分配先の表記とに食い違いがあるときは，図面の読 み手は信号源の内部論理状態を，次の入力の内部論理状態として使う前に反転する必要がある。この不整合は，論理回路設計における誤りの要因の一つであるので，どこにこの不整合（及び反転）が意識的に存在す るかを明示することは役に立つ。そこで，接続線に交差した短い直交線 （不整合記号）を用いて，この不整合（及び反転）を強調することが望ましい

図7．54 二値論理素子を含む回路の配置例

内部論理状態
（a）好ましい例

X 00 11
（b）好ましくない例
図7．55 極性表示子の使用例

図7．56 不整合記号の適用例1

図7．57 不整合記号の適用例2 （図7．56）。
この記号は，接続を不整合記号で二つの部分に分割し，その個々は一致する論理極性又は否定表記を含む。接続線が分岐していれば，接続ツリ一を一致する分岐に分けるために一つ以上の記号を使うことが望ましい（図7．57）。

