 を併記することになる。よく使用される日本電機工業会が定めたJEM 1090：2008 とJEM 1115：2010の抜粋を表7．2及び表7．3に示す。

7．1．1 図記号の使用法

使用する図記号は，JIS規格だけでなく，その基である以下のIEC及びISO規格に規格に準拠している必要がある。従って，使用にあたってはこれらに使用したい記号があるかどうかを確認する必要がある。
（1）IEC 60617 （JIS C 0617）：線図用図記号（電気用図記号）
（2）ISO 14617：線図用図記号
（3）ISO 5807 （JIS X 0121）：情報処理用流れ図・プログラム網図・システム資源図記号等
これら以外に，定義されていない図記号を作成する場合はISO 81714（JIS Z 8222）「製品技術文書に用いる図記号 のデザイン」も考慮する必要がある。例えば，1M間隔の直交格子を基礎にし，必要に応じて0．1M又は0．125Mのサブ格子を用いて描くが，同じファミリーの図記号は同じサブ格子を用いるなどである。尚，描く線の太さは，0．1Mである。 （1）図記号の作成•置き換え
上記規格に適切な図記号が見つからない場合は，以下の方法で図記号を作成する。
（1）既存の図記号を組み合わせて作成する。
（2）関連文書で定義されている図記号を使用する。
（3）IEC 60617（JIS C 0617－2）の図記号「対象」（S00059（02－01－01），S00060（02－01－02），S00061（02－01－03））（図7．1） を適用し，記号の中に文字で記述して，図記号を作成する。
尚，作成した記号が自明でない場合は，注記が必要となる。
必要な図記号が規格群にないとき，先ず最初に既規格の図記号を組合わせて新しい図記号を作成することを検討 するが，その場合，基本的概念を表す図記号を選択し，それに必要な概念を単純に表現できる補完的図記号を追加 －合成する。
補完的な図記号には以下のものがあるが，基本図記号に対して，どの位置に配置するかについての規則はない。
（1）適用分類で限定図記号と分類されている一般図記号
（2）登録されている他の図記号で，必要に応じて，その大きさを修正した一般図記号
図記号の詳細表記などの為に，図7．1に示す図記号「対象」の中に図記号や文字を入れて，図記号を置き換えるこ とができる（例：図7．3）

表7．1 JIS C 0617：2011 電気図記号（抜粋）

No．	図 記 号	説 明
$\begin{aligned} & 02-02-09 \\ & 02-02-10 \\ & 02-02-11 \end{aligned}$		交流，複数の周波数範囲。 図面で複数の周波数範囲を区別する必要がある場合，次の図記号を用いることができる。 比較的低い周波数（商用周波数又は低可聴周波数）。 中間周波数（可聴周波数）。 比較的高い周波数（超音波，搬送無線周波数）。
02－02－12	\simeq	交流部分から整流された電流（整流電流とフィルタリング された電流を区別する必要がある場合）。
02－02－13	＋	陽極
02－02－14	－	峌極
02－02－15	N	中性線 この図記号は，IEC 60445 で中性線として規定している。
02－02－16	M	中間線 この図記号は，IEC 60445 で中䦨線として規定している。
02－02－17	$\because \cdots$	直流 電圧は図記号の右側に表示し，配電方式は図記号の左側に 表示してもよい。 例： $2 / \mathrm{M}=220 / 110 \mathrm{~V}$
［調整，変換及び自動制御］		
No．	図 記 号	說 明
02－03－01	\because	可変調整（一般図記号）
02－03－02		非線形可変調整（一般図記号）
02－03－03	$\because \%$	可変（一般図記号） 制御量の情報を，図記号の近くに表示してもよい。例： 電圧，温度など
02－03－04	$\therefore: \%$	非線形可変（一般図記号） 制御量の情報を，図記号の近くに表示してもよい。例： 電圧，温度など
$02-03-05$ $02-03-06$	$\because \lambda$ $\because I=$	半固定調整 調整をするときの条件は，図記号の近くに表示してもよい。 例： ぜロ電流の条件でだけ半固定調整を許す場合。

No．	図記 号	説 明
$02-01-01$ $02-01-02$ $02-01-03$	様式1 様式2 様式3 \square \square	対象 例： －装置（Equipment） －デバイス（Device） - 機能部品（Functional unit） - 構成部品（Component）- 機能（Function） 図記号の中に対象の種類を表す文字または図記号を記入す ること。 製図上必要ならば他の形の図記号を使ってもよい。
$02-01-04$ $02-01-05$	様式1 様式 2	囲い（球形，槽形）（Envelope（bulb or tank）） 囲込み（Enclosure） 製図上必要ならば他の形の図記号を使ってもよい。囲込み に特別な保護機能特性がある場合，それを注記することも できる。 囲い図記号は，混乱を生じないならば省略してもよい。他 の図記号との接続がある場合には，囲い図記号は表示しな ければならない。 もし，必要なら囲い図記号は，分割してもよい。
02－01－06	\cdots	境界線（Boundary） この図記号は物理的，機㭜的または機能的に連合した対象 群の境界を表示する。 どのような長短の組合せであよい。
02－01－07		仕切り（Screen） 遮へい（シールド）（Shield） 例えば，電界や電磁界の透過を減少させるためのもの。 この図記号はどんな形状で表してもよい。
02－01－08	［ []	偶発的な直接接触に対する保隻（一般図記号） アスタリスク部分には，偶発的な直接接触加ら保護される べき機器装置の図記号を記すこと。
（2）限定図記号 ［電圧及び電流の種類］		
No．	図記 号	説 明
$\begin{aligned} & 02-02-04 \\ & 02-02-05 \end{aligned}$		交流 周波数又は周波数範囲は図記号の右側に表示してもよい。 例： 交流 50 Hz 電圧値は図記号の右側に表示してもよい。 相数及び中性点の有無は，図記号の左側に示してもよい。

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
02－03－07		ステップ動作 ステップ数の数值を追加することもできる。
02－03－08		ステップ調整（5ステップを示してある。）
$\begin{aligned} & 02-03-09 \\ & 02-03-10 \end{aligned}$	た $\because \prime$	連統可変 連続可変（半固定）
$02-03-11$ $02-03-12$		自動制御制御量は，図記号の近くに表示する。 AGC 付増幅器
［力及び運動方向］		
No．	図 記 号	說 明
02－04－01		直線運動（一方向） 力，矢印の向きに一方向
02－04－02		直線運動（双方向） 矢印は，必要な効果を得るため装咺の可動部分が動く方向 を示す。
02－04－03		矢印の向きは円運動，回転又はトルクの方向を表す。
02－04－04		双方向円運動双方向回転双方向トルク
02－04－06	\therefore	振動運動
［流れの方向］		
No．	図 記 号	説 明
02－05－01	$\because \cdots \cdots$	伝缎（一方向） エネルギーの流れ，信号の流れ，情報の流れ

No．	図 記 号	説 明
02－03－07		ステップ動作 ステッブ数の数値を追加することもできる。
02－03－08		ステップ調整（5ステップを示してある。）
$\begin{aligned} & 02-03-09 \\ & 02-03-10 \end{aligned}$	\because	連続可変 連続可変（半固定）
$02-03-11$ $02-03-12$		自動制御制御量は，図記号の近くに表示する。 AGC 付増幅器
［力及び運動方向］		
No．	図 記 号	説 明
02－04－01	\longrightarrow	直線運動（一方向） 力，矢印の向きに一方向
02－04－02	\longleftrightarrow	直線運動（双方向） 矢印は，必要な効果を得るため装置の可動部分が動く方向 を示す。
02－04－03		矢印の向きは円運動，回転又はトルクの方向を表す。
02－04－04	H	双方向円運動双方向回転双方向トルク
02－04－06	\because	振動運動
［流れの方向］		
No．	図 記 号	説 明
02－05－01	$\because \rightarrow \ldots$ ：	伝缎（一方向） エネルギーの流れ，信号の流れ，情報の流れ

No．	図 記 号	説 明
02－05－02	$\cdots \rightarrow$ 范：	伝搬，双方向，同時同時伝送及び受信
02－05－03	：以号：	伝塮，双方向，同時でない同時でない伝送及び受信
02－05－06	$\cdots \cdots$	母線からのエネルギーの流れ
02－05－07	\because	母線へのエネルギーの流れ
02－05－08	\leftrightarrow	エネルギーの流れ，双方向（母線へ及び母線から）

表7．1 JIS C 0617：2011電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
02－10－03	\mathfrak{n}	交流パルス
02－10－04	：：${ }^{\text {\％}}$	正のステップ関数
02－10－05		負のステップ関数
02－10－06		のこぎり（鋸）歯状波
（3）その他の一般用途図記号 ［機械制御及びその他の制御］		
No．	図 記 号	説 明
02－12－05	\models	遅延動作 半径の中心方向に向いているとき，動作が遅延される。
02－12－06		遅延動作 半径の中心方向に向いているとき，動作が遅延される。
02－12－07		自動復㷌
［操作機器•操作機構－1］		
No．	図 記 号	説 明
02－13－01	： 1 －	手動操作
02－13－02		保護付手動操作
02－13－03	－	引き操作
02－13－04	：	回転（ひねり）操作
02－13－05	：E－－	押し操作
02－13－06		近接効果操作
02－13－07		接触操作
02－13－08		非常操作（マッシュルームヘッド型）
02－13－09		ハンドル操作
02－13－10		足踏み操作
02－13－11		てこによる操作

No．	図 記 号	説 明
02－17－03		永久磁石
02－17－04		しゅう（摺）動接点
02－17－06		変換器（一般図記号） 例： 電力変換器 信号変換器 計測用トランスジューサ 変換方向が明確でない場合は，図記号の外に矢印を付けて もよい。 図記号の各部分に入出力量，波形などを示す図記号又は説明を記入してもよい。 例は，図記号 06－14－03を参照。
02－17－06A		変換（一般図記号）
02－17－08	ก：	アナログ この図記号は，アナログと他の信号及び接続を区別する必要がある場合だけ使用しなければならない。 JIS C 0617－13 の第 4 節の概説も参照。
02－17－09	\＃	デジタル この図記号はデジタルと他の信号及び接続を区別する必要 がある場合だけ使用すること。 JIS C 0617－13 の第 4 節の概説及び JIS X 0201 も参照。

表7．1 JIS C 0617：2011電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
02－14－04		気体の流れによる駆動
02－14－05		相対湿度による梂動
（3）その他の一般用途図記号 ［接地及びフレーム接続又は等電位］		
No．	図 記 号	説 明
02－15－01	․	接地（一般図記号） 接地目的が分かりにくい場合，それを補足説明できる。
02－15－03		保護接地 02－15－01 の代わりにこの図記号で特定の保護機能，例えば，事故時の電気的衝撃に対する保護などの接地を表すことが できる。
02－15－05		保護等電位結合
02－15－06		機能接地
02－15－07		機能等電位結合
［理想回路素子］		
No．	図 記 号	説 明
02－16－01		理想電流源
02－16－02		理想電圧源
02－16－03		理想ジャイレータ
$\left[\begin{array}{lll}\text { そ } & \text { の } & \text { 他］}\end{array}\right.$		
No．	図 記 号	説 明
02－17－01		故障 想定された故障地点を示す。

表7．1 JIS C 0617：2011電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
03－01－08		より合わせ接続 2本の接続を示す。 03－01－07 の規則を適用する。
$03-01-09$ $03-01-10$		ケーブルの心線 3心の場合を示す。 03－01－07 の規則を適用する。 5 心線（矢印で示した 2 本の心線が，同一のケーブルに収 まっている。）
03－01－11		同軸ケーブル 同軸構造を維持しない場合は，接線を同軸側にだけに引か なければならない。
03－01－12		端子に接続された同軸ケーブル
03－01－13		遮蔽付同軸ケーブル
03－01－14	\qquad	末接続の導体又はケーブルの端
03－01－15	\qquad	特別な絶緣処理をした未接続の導体又はケーブルの端

No．	図 記 号	説 明
03－01－01	\qquad	接続（一般図記号） 接続群 例： －導体（導線） －ケーブル - 線路 - 伝送路 1 本の線が 1 クルルーブの導体を表している場合，接続数は，同数の斜線若しくは複数の斜線，又は 1 本の斜線とそれに続く接続数とを表す数字によって示せばよい。 接続又は一群の接続を表す図記号の長さは，図のレイアウ トに合わせて調整してよい。
$03-01-02$ $03-01-03$	様式 1 Forml 様式 2 Form2	例： 3本の接続 次のような補足情報を示してよい。 - 電流の種類 - 配電方式 - 周波数 - 電圧 - 導体数 - 各導体の断面積 - 導体材の化学成分 導体数のあとに×で区切り，図記号にして断面積を記入す る。 サイズの異なるものを用いる場合は，＋を区切り図記号に して，その詳細を記入することが望ましい。
$03-01-04$ $03-01-05$	$\therefore=110 \mathrm{~V}$ $2 \times 120 \mathrm{~mm}^{2} \mathrm{Al}$ $\therefore 3 \mathrm{~N} \sim 50 \mathrm{~Hz} 400 \mathrm{~V}$ $\overline{\overline{3 \times 120 \mathrm{~mm}^{2}+1 \times 50 \mathrm{~mm}^{2}}}$	直流回路 例： 110 V ，アルミニウム導体（断面積 $120 \mathrm{~mm}^{2}$ ）2本 三相回路， $50 \mathrm{~Hz}, ~ 400 \mathrm{~V}$ ，断面積 $120 \mathrm{~mm}^{2}$ の導体 3 本， $50 \mathrm{~mm}^{2}$ の中性線1本。 3 N の代わりに $3+\mathrm{N}$ と表示してもよい。
03－01－06		フレキシブル接続
03－01－07	巨．．．．．	遮蔽導体 複数の導体が同一のスクリーン若しくはケーブル内に収納 されているか，又はより合わされているが，その導体の図記号がその他の接続部の図記号と混在している場合は，ケー ブル 03－01－09，遮蔽導体 03－01－07若しくはより合わせ接続部 03－01－08の図記号を導体図記号の混在グループの上，下又は㭬に示す製図法を採用してよい。 図記号は，同一のスクリーン，ケーブル又はより合わせた グルーブ内の導体を表す個々の線を指す引出線で結ばなけ ればならない。 例については，03－01－10を参照。

表7．1 JIS C 0617：2011電気図記号（抜粋）（つづき）

［接続部品］		
No．	図 記 号	説 明
03－03－01	$\cdots($	$\begin{aligned} & \text { (ソケット又はプラグの) めす形接点 } \\ & \text { ソケット } \\ & \text { 単線表示では, 図記号が多接点導体のめす形部分を表す。 } \end{aligned}$
03－03－03		（ソケット又はプラグの）おす形接点 プラグ 単線表示では，図記号が多接点導体のおす形部分を表す。
03－03－05	$\frac{: .:}{x}$	プラク及びソケット 一列表示では，図記号がマルチ接点コネクタのめす形部分及びおす形部分を表す。
03－03－07		多極プラク及びソケット（複線表示） めす形接点及びおす形接点 6 個ずつを複線表示で表したも の。
03－03－08	$\cdots(6$	多極プラグ及びソケット（単線表示） めす形接点及びおす形接点 6 個ずつを単線表示で表したも の。
03－03－09		コネクタ（アセンブリの固定部分） コネクタアセンブリの固定部分と可動部分とを区別するこ とが求められるときだけに用いるのがよい。
03－03－10		コネクタ（アセンブリの可動部分） 03－03－09 の規則を適用する。
03－03－11		コネクタアセンブリ 固定プラグ側と可動ソケット㑡とを表したもの。 03－03－09 の規則を適用する。
03－01－12	$:=:$	電話形プラグ及びジャック 2 極の場合を示す。 ブラグ図記号の最長の極は，プラグの先端及び最短のスリー ブを表す。

表7．1 JIS C 0617：2011電気図記号（抜粋）（つづき）

［ケーブル取付部品］		
No．	図 記 号	説 明
03－04－01		ケーブル終㯰（複心ケーブル） 3 心ケーブルが 1 本の場合を示す。
03－04－02		ケーブル終㯰（単心ケーブル）単心ケーブルが 3 本の場合を示す。
03－04－03		貫通接続箱（複線表示）導体3本の場合を複線表示で示す。
03－04－04		単線表示

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
04－02－01	$\frac{1}{1}$	コンデンサ（一般図記号）
04－02－05	$\overline{T:}$	リードスルーコンデンサ（貫通形コンデンサ）
04－02－05	$\frac{+1}{1}$	有極性コンデンサ電解コンデンサ
04－02－07	并	可変コンデンサ
04－02－09	立:	半固定コンデンサ
04－02－15	$+\underset{\theta}{+}$	温度依存形有極性コンデンサ
04－02－16	$+\underset{v}{t}$	電圧依存形有極性コンデンサ

［インダクタ］		
No．	図 記 号	說 明
04－03－01	m	コイル（一般図記号） 卷線（一般図記号） インダクタ チョーク リアクトル インダクタに磁心があることを示したい場合，図記号に平行な単線を追加してもよい。非磁性材料であることを示す注釈をこの線に付けてもよい。 磁心のキャップを示すために線を中断してもよい。 備考 変圧器の巻線については（IEC 60617－6）を参照。
04－03－03	cm	磁心入インタクタ リアクトル
04－03－04	\bar{m}	キャップ付磁心入インタクタ リアクトル
04－03－05	$\frac{x}{n+1}$	連続可変磁心入インダクタ リアクトル

No．	図 記 号	説 明
05－05－15	$\therefore \underline{\leftarrow}$	Nチャネル絶縁ゲート形電界効果トランジスタ（IGFET） で，デブレション形•単ゲート・サブストレート接続 のないもの
05－05－16	2	Pチャネル絶縁ゲート形電界効果トランジスタ（IGFET） で，デブレション形•単ゲート・サブストレート接続 のないもの
05－05－18		Pチャネル絶縁ゲートバイポーラトランジスタ（IGBT）で， エンハンスメント形
05－05－19		Nチャネル絶縁ゲートバイポーラトランジスタ（IGBT）で， エンハンスメント形
05－05－20		Pチャネル絶縁ゲートバイポーラトランジスタ（IGBT）で， デブレション形
05－05－21		Nチャネル絶縁ゲートバイポーラトランジスタ（IGBT）で， デブレション形

［光電素子及び磁界感応素子の例］		
No．	図 記 号	説 明
05－06－01		光応答抵抗素子（LDR）光導電素子
05－06－02	\pm	フォトタイオード
05－06－03	$\frac{11}{1}$	フォトセル
05－06－04		フォトトランジスタ（PNP タイブ）

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
05－04－01	$\not ⿻$	逆阻止2端子サイリスタ
05－04－06		P ゲート逆阻止3端子サイリスタ（カソード㑡を制御）
05－04－09	雨	Pゲートターンオフサイリスタ（カソード㑡を制御）
05－04－11		双方向性3端子サイリスタ トライアック

［トランジスタの例］		
No．	図 記 号	説 明
05－05－01		PNPトランジスタ
05－05－02		NPNトランジスタ（コレクタを外囲器と接続）
05－05－09	$\because \because$	Nチャネル接合形電界効果トランジスタ ゲート及びソースの接続は，直線上に記入する。 ドレイン $\begin{array}{lll} \text { ゲート } & \rightarrow \text { ソレイン } \\ \text { ソース } \end{array}$
05－05－10		Pチャネル接合形電界効果トランジスタ
05－05－11	\therefore	Pチャネル絶縁ゲート形電界効果トランジスタ（IGFET） で，エンハンスメント形•単ゲート・サブストレート接続 のないもの 多重ゲートの例は，図記号 05－05－17 を参照。
05－05－12	洰	Nチャネル絶縁ゲート形電界効果トランジスタ（IGFET） で，エンハンスメント形•単ゲート・サブストレート接続 のないもの
05－05－13		Pチャネル絶縁ゲート形電界効果トランジスタ（IGFET） で，エンハンスメント形•単ゲート・サブストレート接続引出しのもの
05－05－14	: 牙	Nチャネル絶縁ゲート形電界効果トランジスタ（IGFET） で，エンハンスメント形•単ゲート・サブストレートを内部でソースと接続しているもの

No．	図 記 号	説 明
06－01－04		例： 三相卷線（相間接続なし）
06－01－05	｜m	m 相巻線（相間接続なし）
06－01－06	！	分離した二相巻線
［内部で接続した巻線］		
No．	図 記 号	説 明
06－02－01		二相巻線
06－02－02		三相卷線［V 結線（60 ${ }^{\circ}$ ）］
06－02－03		四相巻線（中性点を引き出した）
06－02－04	T	三相巻線 T 結線（スコット結線）
06－02－05	\triangle	三相卷線 三角結線（デルタ結線） この図記号は，多相巻線の多角結線の場合に，相数を表す数字を添えて用いてもよい。
06－02－06	Δ	三相卷線 開放三角結線（オープンデルタ夕結線）
06－02－07		三相卷線 星形結線（スター結線） この図記号は，多相巻線の星形結線の場合に，相数を表す数字を添えて用いてもよい。
06－02－08	Y	中性点を引き出した三相卷線星形結線（スター結線）
06－02－09	K	三相卷線 千鳥（ジグザグスター）結線又は相互接続星形結線
06－02－10		六相卷線（二重三角結線）
06－02－11		六相卷線（多角結線）
06－02－12	*	六相巻線 星形結線（スター結線）

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
05－06－05		4端子ホール素子
05－06－06		磁気抵抗素子
05－06－08		$\begin{aligned} & \text { オプトカプラ } \\ & \text { フォトカブラ } \\ & \text { オプトアイソレータ } \\ & \text { 発光ダイオード・フォトトランジスタ付きの場合を示す。 } \end{aligned}$
（2）電 子 管 ［電子管の例］		
No．	図 記 号	説 明
05－11－01		直熱乿極形 3 極管
05－11－02		傍熱陰極形ガス入り3拯管 サイラトロン
05－11－03		5極管抑制グリッドと陰極とが内部接続された傍熟峌極形 5 極管。

「電気用図記号一第6部：電気エネルギーの発生及び変換」（抜粋） （1）巻線の相互接続に使用する限定図記号 ［分離した巻線］		
No．	図 記 号	説 明
06－01－01	1	単卷線 1．個別巻線の数は，次のいずれかによって表示するのがよ い。 －描く線の本数による。 ーこの図記号に数字を添える。
06－01－02		3 巻線
06－01－03	$\left.\cdots \because\right\|^{\circ} \mathrm{O}$	6 巻線 2．外部で種々の方法で接続することができる複数個の巻線 を表すのに図記号 06－01－01 を用いてもよい。

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

No．	図 記 号	説	明
06－05－02		直流分卷電動機	
06－05－03		直流複巻（内分卷）発電機	

［同期機の例］			
No．	図 記 号	説	明
06－07－01		永久磁石付き三相同期発電機	
06－07－02		単相同期電動機	

No．	図 記 号	説 明
06－02－13		六相巻線（フォーク結線，中性点を引き出した）
（2）回 転 機 ［回転機の要素］		
No．	図 記 号	鮵 明
06－03－04	F	ブラシ（スリップリング又は整流子に付いているもの）

No．	図 記 号	説 明
06－04－01		回転機（一般図記号） アスタリスク，＊は，次に示す文字記号の中の一つで㯰き換えなければならない。 C 回転変換機 G 発電機 GP 永久磁石発電機 GS 同期発電機 M 電動機 MG 発電機又は電動機として用いることができる回転機 MGS 同期発電電動機 MP 永久磁石電動機 MS 同期電動機 RC 同期調相機 図記号 02－A2－03 及び 02－A2－04 を，多くの例に示すよう に追加してもよい。 静止形発電機については，図記号 06－16－01 及びその例を参照。
06－04－02		リニアモータ（一般図記号）
06－04－03		$\begin{aligned} & \text { ステッピングモータ (一般図記号) } \\ & \text { パルスモータ (一般図記号) } \end{aligned}$

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

\begin{tabular}{|c|c|c|}
\hline No． \& 図 記 号 \& 説 明

\hline $06-09-08$

$06-09-09$ \& | 様式1 |
| :--- |
| Form1 |
| 様式2 |
| Form2 |
| $\dot{\sim}$ | \& \[

$$
\begin{aligned}
& \text { リアクトル (一般図記号) } \\
& \text { チョーク }
\end{aligned}
$$
\]

\hline \[
$$
\begin{aligned}
& \hline 06-09-10 \\
& 06-09-12 \\
& \\
& \\
& 06-09-11 \\
& 06-09-13
\end{aligned}
$$

\] \& | 様式 1 |
| :--- |
| Forml |
| 様式 2 |
| Form2 | \& | 変流器（一般図記号） |
| :--- |
| 同じ記号が，パルス変成器として，06－09－12，06－09－13で定義 されている。 |

\hline \multicolumn{3}{|l|}{［別個の巻線を用いる変圧器の例］}

\hline No． \& 図 記 号 \& 説 明

\hline 06－10－01 \& | 様式1 Forml |
| :--- |
| 様式2 |
| Form2 |
| $:\lfloor\underset{\sim}{n}=1$ | \& 遜蔽付き 2 巻線単相変圧器

\hline $06-10-03$

$06-10-04$ \& | 様式 1 |
| :--- |
| Form1 |
| 様式 2 |
| Form2 |
| Nin | \& 中閭点引き出し単相変圧器

\hline
\end{tabular}

No．	図 記 号	説	明
06－10－17	様式1 Form1	星形星形三角結線の三相変圧器	
06－10－18			

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

No．		図記 号	説 明
06－13－08	$\begin{array}{\|l\|} \hline \text { 様式 } \\ \text { Forml } \end{array}$		1 次巻總の役をする導体を 5 回通した変流器 この種の変流器は，1 次卷線をもたない。
06－13－09	様式 2 Form2		
06－13－10	$\begin{array}{\|l\|} \hline \text { 様式 } \\ \text { Forml } \\ \hline \end{array}$		3 本の 1 次導体をまとめて通したパルス変成器又は変流器
06－13－11	様式2 Form2		
06－13－12	$\begin{aligned} & \text { 様式 } 1 \end{aligned}$		同一鈇心に 2 個の 2 次巻線があるパルス変成器又は変流器 9 本の 1 次導体をまとめて通した場合を示してある。
06－13－13	檥式2 Form2		

表7．1 JIS C 0617：2011電気図記号（抜粋）（つづき）

表7．1 JIS C 0617：2011電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
06－14－04		全波接続（ブリッジ接続）の整流器
06－14－05		インバータ（逆変換装置）
06－14－06		順変換装置逆変換装置

No．	図 記 号	説 明
06－15－01		1 次電池 2 次電池 1 次電池又は 2 次電池 長線が陽極（＋）を示し，短線が除極（ $~-~) ~ を$ 示している。
（6）発電装置 ［非回転式発電機（一般図記号）］		
No．	図 記 号	説 明
06－16－01	G	発電装置（一般図記号）回転発電機については，図記号 06－04－01を参照。
06－16－02	바	DC電源機能（一般図記号） 長線が陽極（＋）を示し，短線が陰極（ $~-~$ ）を示している。

No．	図 記 号	說	明
06－17－01		熱源（一般図記号）	
06－17－01		ラジオアイソトーブによる熱源	
06－17－01		燃焼による熱源	
［発電装置の例］			
No．	図 記 号	説	明
06－18－06	$\begin{array}{lr\|r\|} \hline & G \\ \vdots & -1 \\ \hline \end{array}$	太陽光発電装䈌	

No．	図記 号	説 明
07－05－03	$\%$	プレーク接点（限時開路）限時動作僢時復帰のブレーク接点。 参考：JIS 旧図記号
07－05－04	$\stackrel{y}{\because}$	ブレーク接点（限時閉路） 瞬時動作限時復㷌のブレーク接点。 参考：JIS 旧図記号
07－05－05	:	メーク接点（限時）限時動作限時復買のメーク接点。 参考：JIS 旧図記号
07－05－06	ol:	接点の組合せ 同一器具内に，動作が運延しないメーク接点が 1 個，動作 が運延するメーク接点が 1 個，更に，この装疊が作動解除 させられたときに，動作が遈延するブレーク接点が 1 個あ ることを示す。

（3）スイッチ，開閉装置及び始動器 ［単極スイッチ］		
No．	図 記 号	説 明
07－07－01		手動操作スイッチ（一般図記号） 参考：JIS 旧図記号
07－07－02	$\begin{aligned} & : 1 \\ & E-1 \\ & : 1 \end{aligned}$	手動操作の押しボタンスイッチ（自動復锓） 参考：JIS 旧図記号
07－07－03	\|	手動操作の引きボタンスイッチ（自動復钮） 参考：JIS 旧図記号
07－07－04	\|	手動操作のひねりスイッチ（非自動復㫶） 参考：JIS 旧図記号
07－07－05	E-	確実動作が行われる手動操作の押しボタンスイッチ（自動復㷌）

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

No．	図記 号	説 明
07－02－03	$\begin{aligned} & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	プレーク接点 参考：JIS 旧図記号
07－02－04	:	非オーバーラップ切換え接点 参考：JIS 旧図記号
07－02－05		オフ位置付き切換え接点 参考：JIS 旧図記号
$07-02-06$ $07-02-07$		オーパーラップ切換え接点 参考：JIS 旧図記号
07－02－08		二重メーク接点 参考：JIS 旧図記号
07－02－09	$\begin{aligned} & \vdots \\ & \vdots \vdots \\ & \vdots \end{aligned}$	二重ブレーク接点 参考：JIS 旧図記号
［限時動作接点］		
No．	図記 号	説 明
07－05－01		メーク接点（限時関路）限時動作眻時復婦のメーク接点。 参考：JIS 旧図記号
07－05－02		メーク接点（䧋時開路）睬時動作限時復㫶のメーク接点。 参考：JIS 旧図記号

No．	図 記 号	説 明
07－13－03		自動引外し装置付き電磁接触器継電器又は開放機構によって作動。
07－13－04	$\frac{b}{4}$	電磁接触器の主ブレーク接点電磁接触器 接点は，休止状態で閉じている。 参考：JIS 旧図記号
07－13－05		遮断器 参考：JIS 旧図記号
07－13－06		アイソレータ 断路器 参考：JIS 旧図記号
07－13－07		双投形断路器双投形アイソレータ 参考：JIS 旧図記号
07－13－08		負荷開閉器 参考：JIS 旧図記号
07－13－09		自動引外し装置付き負荷開閉器継電器又は開放機構を備えた自動引外し装置付き負荷開閉器。
07－13－11		引外し自由機構（トリップフリー） リンク機構の種々の要素を表す破線は，次の方法で記さな ければならない。 左㑡：開放及び投入を行う操作装置から。 右側：関連する主接点及び補助接点まで。 上辺又は下辺：制圧的開放機能の備わった操作部から。
07－13－12		引外し自由機構（適用例） 電動又は手動で操作する機械式 3 極開閉装置で，引外し自由機構及び次のものが備わっている。 - 熱動過負荷引外し装置 - 過電流引外し装置 - 戻り止め付き手動引外し装置 - 遠隔引外し装置用のコイル - 補助用のメーク接点 1 個及びブレーク接点 1 個

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
07－07－06		非常停止スイッチ ブレーク接点の確実な開放操作を行い，その位置を維持す る（＂きのこ型ヘッド＂で操作する）。
［リミットスイッチ］		
No．	図 記 号	説 明
07－08－01	$\begin{aligned} & \vdots \\ & \vdots \end{aligned}$	リミットスイッチ（メーク接点） 参考：JIS 旧図記号
07－08－02	\vdots	リミットスイッチ（プレーク接点） 参考：JIS 旧図記号
07－08－03		リミットスイッチ（機械的に連結される個別のメーク接点 とブレーク接点） 参考：JIS 旧図記号
07－08－04		リミットスイッチ（確実な開放フレーク接点）

表7．1 JIS C 0617：2011電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
07－15－09		趛蝺動作形及び荤緩復旧形継電器コイル
07－15－10		高速動作形（高速動作形及び高速復旧形）継電器コイル
07－15－11		交流不感動形継電器コイル
07－15－12		交流感動形継電器コイル
07－15－13		機械的共振形継電器コイル
07－15－14		機械的ラッチング形䋛電器コイル
07－15－21		熱動継電器で構成される作動装置 参考：JIS 旧図記号 （a）非封入形 （b）封入形
07－15－22		電子式継電器で構成される作動装置

No．	図 記 号	説 明
07－14－01	7	電動機始動器（一般図記号） 始動器の特定の形を表示するために，一般図記号の内部に 限定図記号を示すことができる。 図記号 07－12－05，07－14－06及び 07－14－07 を参照。
07－14－02		ステップ形の始動器 ステッブ数を表示してもよい。
07－14－03		始動調整器
07－14－05		主回路直結始動器（可逆）
07－14－06		スターデルタ始動器
07－14－07		単巻変圧器を用いる始動器
07－14－08		サイリスタを用いる始動調整器

（4）補助継電器 ［作 動 装 置］		
No．	図 記 号	鮵 明
07－15－01		作動装置（一般図記号） 䋛電器コイル（一般図記号） 複巻線をもつ作動装置は，それに相当する数の斜線を輪郭 の中に引いて表示してもよい。図記号 07－15－04 を参照。 参考：JIS 旧図記号
07－15－07		逢緩復旧形継電器コイル
07－15－08		遅緩動作形継電器コイル

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
07－16－01		保謢継電器 保護継電器に関連する装咀 1．アスタリスクの代わりに，この装置のバラメータを示す文字記号又は限定図記号の一つ以上を，次の順序で記さな ければならない。 - 特性量及びその変動モード - エネルギーの流れ方向 - 設定範囲 - 再設定比 - 荤延作用 - 時間遅れの値 2．特性量を表す文字記号は，確立された規格，例えば， IEC 60027 及びJIS Z 8202 （規格群）の規定に従わなけれ ばならない。 3．同様な測定素子の数を示す数字を，07－17－05 などに示 すように，この図記号の中に記してもよい。 4．この図記号は，装置全体を表す機能に関する図記号とし て，又は装置の作動要素だけを表す図記号として用いるこ とができる。
07－16－02	$\because \underset{r 7}{ }$	フレーム地絡電圧障害時のフレーム電位
07－16－03	$U_{\text {rsd }}$	残留電圧
07－16－04	$I \leftarrow$	逆電流
07－16－05	$I_{\text {d }}$	差動電流
07－16－06	I_{d} / I	比率差電流
07－16－07	$I \stackrel{1}{=}$	地絡電流
07－16－08	I_{N}	中性点電流
07－16－09	$I_{\text {N－N }}$	二つの多相系統間の中性点電流
07－16－10	P_{α}	位相角 a における電力
07－16－11	\because	反限時特性

\footnotetext{
［保護継電器の例］

No．	図 記 号	説 明
07－20－04		近接スイッチ（鉄の接近で作動） 鉄の接近で作動する近接スイッチを示す（ブレーク接点）。
（7）保護装置[ヒューズ及びヒューズスイッチ]		
No．	図 記 号	鮵 明
07－21－01		ヒュース（一般図記号）
07－21－02		ヒュース 溶断後も電源が活きたままである㑡を黒塗りで表示してあ る。
07－21－04		警報接点付きヒューズ警報接点付きで 3 端子のものを示す。
07－21－05		別個の警報接点付きヒュース別個の警報接点付きを示す。
07－21－06		ストライカ付き 3 㮀スイッチ ストライカ付きヒューズの中の任意の一つによって自動的 に作動する引外し装置が備わったものを示す。
07－21－07		ヒューズ付き開閉器 参考：JIS 旧図記号
07－21－08		ヒューズ付き断路器 ヒューズ付きアイソレータ 参考：JIS 旧図記号
07－21－09		ヒューズ付き負荷開閉器負荷遮断用ヒューズ付き開閉器 参考：JIS 旧図記号

表7．1 JIS C 0617：2011電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
07－17－14		過電流継電器 電流が設定値の 5 倍を超えたときに作動する出力，及び反限時特性の設定によって作動する出力の，二つの出力があ る過電流継電器。
［その他の装置］		
No．	図 記 号	説 明
07－18－01		プッフホルツ保護装置気体継電器
07－18－02		自動再閉路用装置自動再閉路継電器
（6）近接装置及び触れ感応装置 ［センサ及び検出器］		
No．	図 記 号	說 明
07－19－01		近接センサ
07－19－04		接触センサ
［スイッチ］		
No．	図 記 号	説 明
07－20－01		触れ感応スイッチ メーク接点付きを示す。
07－20－02		近接スイッチ メーク接点付きを示す。
07－20－03		近接スイッチ（磁石の接近で作動）磁石の接近で作動する近接スイッチを示す（メーク接点）。

表7．1 JIS C 0617：2011電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
07－26－03		静止形熱動過負荷継電器 一つの半導体メーク接点と，一つの半導体プレーク接点付 きの 3 極熱動過負荷継電器。別個の補助電源が必要である。
07－26－04		静止形継電器 半導体メーク接点付き半導体形作動装嘼
［結合装置及び静止形継電器のブロック図記号］		
No．	図 記 号	説 明
07－27－01		電気分離形結合装置 1．アスタリスク（＊）は，結合媒体を表す図記号で置き換 えるか，又は省略しなければならない。 2．＂ X ＂及び＂ $\mathrm{Y} "$＂は，関連する量を表す適切な補助記号で置き換えるか，又は省略しなければならない。 3．二重斜線の代わりに二重対角線を使用してもよい。
07－27－02		電気分離形結合装置（光学的結合）電気絶縁形光学的結合装置

電気用図記号一第8部：計器，ランプ及び信号装置」（抜粋）伜） ［指示計器，記録計及び積算計（一般図記号）］		
No．	図 記 号	説 明
08－01－01		指示計器（一般図記号） アスタリスクは，注釈 A00144の規定に従って置き換えな ければならない。
08－01－02		記録計（一般図記号） アスタリスクは，注釈 A00144の規定に従って置き換えな ければならない。
08－01－03		積算計（一般図記号） エネルギー計など アスタリスクは，注釈A00144の規定に従って置き換えな ければならない。 この図記号は，積算計の表示値を再現する遠隔計器にも用 いることができる。例として，図記号 08－04－11 を参照。 この図記号は，記録計を表す図記号と組み合わせて，複合計器を表現することができる。 例として，図記号 08－04－14 を参照。 エネルギーの流れ方向を指定するのに，02－05－01～02－05－ 08 の図記号を用いることができる。 例として，図記号 08－04－04～08－04－07 を参照。 図記号の上㑡にある長方形の数は，多種料金計が指示する異なる積算値の種類数を示す。 例として，図記号 08－04－08を参照。

［放電ギャッブ及び避雷器］
表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

［記録計の例］			
No．	図 記 号	説	明
08－03－01		記録電力計	
08－03－02		記録電力計（記録無効電力計付）	

表7．1 JIS C 0617：2011 電気図記号（抜粋）（つづき）

No．	図 記 号	説 明
08－04－12		従属電力量計（印字装置付，表示器）
08－04－13		電力量計（最大需要電力計付）
08－04－14		電力量計（最大需要電力記録計付）
08－04－15		無効電力量計
［熱 電	対］	
No．	図 記 号	説 明
08－06－01	様式1 Forml	熱電対極性図記号を添えて示してある。
08－06－03		直熱形熱電対 図記号 05－07－06 の代わりに 05－A7－02 を用いて，加熱エレ メントを表示してもよい。
08－06－05		傍熱形熱電対 図記号 05－07－06（S00698）の代わりに 05－A7－02を用いて， 加熱エレメントを表示してもよい。

